Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. Ellsworth is active.

Publication


Featured researches published by Peter C. Ellsworth.


Crop Protection | 2001

IPM for Bemisia tabaci: A case study from North America

Peter C. Ellsworth; Jose Luis Martinez-Carrillo

Abstract A model of whitefly integrated pest management (IPM) has been proposed that conveniently organizes all Bemisia tabaci control tactics into a multi-level, multi-component pyramid and defines three major keys as “sampling”, “effective chemical use”, and “avoidance”. Each component is described along with information about its implementation, adoption, and importance in the low (


Entomologia Experimentalis Et Applicata | 2005

Mortality dynamics and population regulation in Bemisia tabaci

Steven E. Naranjo; Peter C. Ellsworth

Natural mortality is an important determinant of the population dynamics of a species, and an understanding of mortality forces should aid in the development of better management strategies for insect pests. An in situ, observational method was used to construct cohort‐based life tables for Bemisia tabaci (Gennadius) Biotype B (Homoptera: Aleyrodidae) over 14 generations on cotton in central Arizona, USA, from 1997 to 1999. In descending order, median marginal rates of mortality were highest for predation, dislodgment, unknown causes, egg inviability, and parasitism. The highest mortality occurred during the 4th nymphal stadium, and the median rate of immature survival over 14 generations was 6.6%. Predation during the 4th nymphal stadium was the primary key factor. Irreplaceable mortality was highest for predation and dislodgment, with the absence of these mortality factors leading to the greatest increases in estimated net reproduction. There was little evidence of direct or delayed density‐dependence for any mortality factor. Wind, rainfall, and predator densities were associated with dislodgment, and rates of predation were related to densities of Geocoris spp., Orius tristicolor (White), Chrysoperla carnea s.l. Stephens, and Lygus hesperus Knight. Simulations suggest that immigration and emigration play important roles in site‐specific dynamics by explaining departures from observed population trajectories based solely on endogenous reproduction and mortality. By a direct measurement of these mortality factors and indirect evidence of adult movement, we conclude that efficient pest management may be best accomplished by fostering greater mortality during the 4th stadium, largely through a conservation of predators and by managing immigrating adult populations at their sources.


Entomologia Experimentalis Et Applicata | 2006

A GIS-based approach for areawide pest management: the scales of Lygus hesperus movements to cotton from alfalfa, weeds, and cotton

Yves Carrière; Peter C. Ellsworth; Pierre Dutilleul; Christa Ellers-Kirk; Virginia Barkley; Larry Antilla

Understanding the effect of cropping patterns on population dynamics, dispersal, and habitat selection of insect pests has been an unresolved challenge. Here, we studied the western tarnished plant bug, Lygus hesperus (Knight) (Heteroptera: Miridae), in cotton during early summer in central Arizona. We used a general approach based on global positioning system (GPS) and geographic information system (GIS) technologies combined with spatial statistics to assess the maximum distance at which forage and seed alfalfa, fallow fields with weeds, and cotton affect L. hesperus population density. Using a set of 50 cotton fields as focal fields, we found that forage and seed alfalfa as well as weeds acted as L. hesperus sources for these cotton fields. The source effect did not extend beyond 375, 500, and 1500 m for forage alfalfa, weeds, and seed alfalfa, respectively. Conversely, cotton fields acted as L. hesperus sinks, but this effect did not extend further than 750 m from the focal cotton fields. These findings suggest that specific spatial arrangements of these field types could reduce L. hesperus damage to cotton. The spatially explicit approach used here provides a direct evaluation of the effects of agroecosystem heterogeneity on pest population dynamics, dispersal, and habitat selection, which is a significant asset for the development and improvement of areawide pest management.


Pest Management Science | 2009

Fifty years of the integrated control concept: moving the model and implementation forward in Arizona.

Steven E. Naranjo; Peter C. Ellsworth

Fifty years ago, Stern, Smith, van den Bosch and Hagen outlined a simple but sophisticated idea of pest control predicated on the complementary action of chemical and biological control. This integrated control concept has since been a driving force and conceptual foundation for all integrated pest management (IPM) programs. The four basic elements include thresholds for determining the need for control, sampling to determine critical densities, understanding and conserving the biological control capacity in the system and the use of selective insecticides or selective application methods, when needed, to augment biological control. Here we detail the development, evolution, validation and implementation of an integrated control (IC) program for whitefly, Bemisia tabaci (Genn.), in the Arizona cotton system that provides a rare example of the vision of Stern and his colleagues. Economic thresholds derived from research-based economic injury levels were developed and integrated with rapid and accurate sampling plans into validated decision tools widely adopted by consultants and growers. Extensive research that measured the interplay among pest population dynamics, biological control by indigenous natural enemies and selective insecticides using community ordination methods, predator:prey ratios, predator exclusion and demography validated the critical complementary roles played by chemical and biological control. The term ‘bioresidual’ was coined to describe the extended environmental resistance from biological control and other forces possible when selective insecticides are deployed. The tangible benefits have been a 70% reduction in foliar insecticides, a >


Annual Review of Entomology | 2015

Economic Value of Biological Control in Integrated Pest Management of Managed Plant Systems

Steven E. Naranjo; Peter C. Ellsworth; George B. Frisvold

200 million saving in control costs and yield, along with enhanced utilization of ecosystem services over the last 14 years. Published in 2009 by John Wiley & Sons, Ltd.


Biocontrol Science and Technology | 2003

Improved Conservation of Natural Enemies with Selective Management Systems for Bemisia tabaci (Homoptera: Aleyrodidae) in Cotton*

Steven E. Naranjo; James R. Hagler; Peter C. Ellsworth

Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance

Yves Carrière; Christa Ellers-Kirk; Kyle Hartfield; Guillaume Larocque; Ben A. Degain; Pierre Dutilleul; Timothy J. Dennehy; Stuart E. Marsh; David W. Crowder; Xianchun Li; Peter C. Ellsworth; Steven E. Naranjo; John C. Palumbo; Al Fournier; Larry Antilla; Bruce E. Tabashnik

A large-scale study was conducted in 1996 to evaluate and demonstrate strategies for pest management of Bemisia tabaci (Gennadius) in cotton involving different insecticide regimes, application methods, and action thresholds. Here we examined the effects of the various management systems on the abundance and activity of native natural enemies. Population densities of 18 out of 20 taxa of arthropod predators were significantly higher in regimes initiated with the insect growth regulators (IGRs) buprofezin (chitin inhibitor) or pyriproxyfen (juvenile hormone analog) compared with a regime dependent on a rotation of conventional, broad-spectrum insecticides. There were no differences in predator density between the two IGR regimes, and generally no effects due to application method or action threshold level. Predator to prey ratios were significantly higher in regimes utilizing the two IGRs compared with the conventional regime, but were unaffected by application method or threshold level. Rates of parasitism by Eretmocerus eremicus Rose and Zolnerowich and Encarsia meritoria Gahan were higher in the IGR regimes compared with the conventional regime, but were unaffected by insecticide application method, or the action threshold used to initiate applications of the IGRs. Results demonstrate the selective action of these two IGRs and suggest that their use may enhance opportunities for conservation biological control in cotton systems affected by B. tabaci, especially relative to conventional insecticide alternatives.


Pest Management Science | 2012

Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona

Xianchun Li; Benjamin A. Degain; Virginia S. Harpold; Paula G Marçon; Robert L. Nichols; Alfred J. Fournier; Steven E. Naranjo; John C. Palumbo; Peter C. Ellsworth

The refuge strategy is used worldwide to delay the evolution of pest resistance to insecticides that are either sprayed or produced by transgenic Bacillus thuringiensis (Bt) crops. This strategy is based on the idea that refuges of host plants where pests are not exposed to an insecticide promote survival of susceptible pests. Despite widespread adoption of this approach, large-scale tests of the refuge strategy have been problematic. Here we tested the refuge strategy with 8 y of data on refuges and resistance to the insecticide pyriproxyfen in 84 populations of the sweetpotato whitefly (Bemisia tabaci) from cotton fields in central Arizona. We found that spatial variation in resistance to pyriproxyfen within each year was not affected by refuges of melons or alfalfa near cotton fields. However, resistance was negatively associated with the area of cotton refuges and positively associated with the area of cotton treated with pyriproxyfen. A statistical model based on the first 4 y of data, incorporating the spatial distribution of cotton treated and not treated with pyriproxyfen, adequately predicted the spatial variation in resistance observed in the last 4 y of the study, confirming that cotton refuges delayed resistance and treated cotton fields accelerated resistance. By providing a systematic assessment of the effectiveness of refuges and the scale of their effects, the spatially explicit approach applied here could be useful for testing and improving the refuge strategy in other crop–pest systems.


PLOS ONE | 2012

Effects of Local and Landscape Factors on Population Dynamics of a Cotton Pest

Yves Carrière; Peter B. Goodell; Christa Ellers-Kirk; Guillaume Larocque; Pierre Dutilleul; Steven E. Naranjo; Peter C. Ellsworth

BACKGROUND Development of pyriproxyfen and neonicotinoid resistance in the B-biotype whitefly and recent introduction of the Q biotype have the potential to threaten current whitefly management programs in Arizona. The possibility of integrating the novel anthranilic diamides chlorantraniliprole and cyantraniliprole into the current program to tackle these threats largely depends on whether these compounds have cross-resistance with pyriproxyfen and neonicotinoids in whiteflies. To address this question, the authors bioassayed a susceptible B-biotype strain, a pyriproxyfen-resistant B-biotype strain, four multiply resistant Q-biotype strains and 16 B-biotype field populations from Arizona with a systemic uptake bioassay developed in the present study. RESULTS The magnitude of variations in LC(50) and LC(99) among the B-biotype populations or the Q-biotype strains was less than fivefold and tenfold, respectively, for both chlorantraniliprole and cyantraniliprole. The Q-biotype strains were relatively more tolerant than the B-biotype populations. No correlations were observed between the LC(50) (or LC(99)) values of the two diamides against the B- and Q-biotype populations tested and their survival rates at a discriminating dose of pyriproxyfen or imidacloprid. CONCLUSION These results indicate the absence of cross-resistance between the two anthranilic diamides and the currently used neonicotinoids and pyriproxyfen. Future variation in susceptibility of field populations to chlorantraniliprole and cyantraniliprole could be documented according to the baseline susceptibility range of the populations tested in this study.


Journal of Economic Entomology | 2002

CONSERVATION OF PREDATORY ARTHROPODS IN COTTON: ROLE OF ACTION THRESHOLDS FOR BEMISIA TABACI (HOMOPTERA: ALEYRODIDAE)

Steven E. Naranjo; Peter C. Ellsworth; C. C. Chu; T. J. Henneberry

Background Many polyphagous pests sequentially use crops and uncultivated habitats in landscapes dominated by annual crops. As these habitats may contribute in increasing or decreasing pest density in fields of a specific crop, understanding the scale and temporal variability of source and sink effects is critical for managing landscapes to enhance pest control. Methodology/Principal Findings We evaluated how local and landscape characteristics affect population density of the western tarnished plant bug, Lygus hesperus (Knight), in cotton fields of the San Joaquin Valley in California. During two periods covering the main window of cotton vulnerability to Lygus attack over three years, we examined the associations between abundance of six common Lygus crops, uncultivated habitats and Lygus population density in these cotton fields. We also investigated impacts of insecticide applications in cotton fields and cotton flowering date. Consistent associations observed across periods and years involved abundances of cotton and uncultivated habitats that were negatively associated with Lygus density, and abundance of seed alfalfa and cotton flowering date that were positively associated with Lygus density. Safflower and forage alfalfa had variable effects, possibly reflecting among-year variation in crop management practices, and tomato, sugar beet and insecticide applications were rarely associated with Lygus density. Using data from the first two years, a multiple regression model including the four consistent factors successfully predicted Lygus density across cotton fields in the last year of the study. Conclusions/Significance Our results show that the approach developed here is appropriate to characterize and test the source and sink effects of various habitats on pest dynamics and improve the design of landscape-level pest management strategies.

Collaboration


Dive into the Peter C. Ellsworth's collaboration.

Top Co-Authors

Avatar

Steven E. Naranjo

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Crowder

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge