Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. K. Lau is active.

Publication


Featured researches published by Peter C. K. Lau.


Chemical Reviews | 2011

Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry

Hannes Leisch; Krista Morley; Peter C. K. Lau

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRC


Journal of Bacteriology | 2006

Proteomic Analysis of Campylobacter jejuni 11168 Biofilms Reveals a Role for the Motility Complex in Biofilm Formation

Martin Kalmokoff; Patricia Lanthier; Tammy-Lynn Tremblay; Mary Foss; Peter C. K. Lau; Greg Sanders; John W. Austin; John M. Kelly; Christine M. Szymanski

Campylobacter jejuni remains the leading cause of bacterial gastroenteritis in developed countries, and yet little is known concerning the mechanisms by which this fastidious organism survives within its environment. We have demonstrated that C. jejuni 11168 can form biofilms on a variety of surfaces. Proteomic analyses of planktonic and biofilm-grown cells demonstrated differences in protein expression profiles between the two growth modes. Proteins involved in the motility complex, including the flagellins (FlaA, FlaB), the filament cap (FliD), the basal body (FlgG, FlgG2), and the chemotactic protein (CheA), all exhibited higher levels of expression in biofilms than found in stationary-phase planktonic cells. Additional proteins with enhanced expression included those involved in the general (GroEL, GroES) and oxidative (Tpx, Ahp) stress responses, two known adhesins (Peb1, FlaC), and proteins involved in biosynthesis, energy generation, and catabolic functions. An aflagellate flhA mutant not only lost the ability to attach to a solid matrix and form a biofilm but could no longer form a pellicle at the air-liquid interface of a liquid culture. Insertional inactivation of genes that affect the flagellar filament (fliA, flaA, flaB, flaG) or the expression of the cell adhesin (flaC) also resulted in a delay in pellicle formation. These findings demonstrate that the flagellar motility complex plays a crucial role in the initial attachment of C. jejuni 11168 to solid surfaces during biofilm formation as well as in the cell-to-cell interactions required for pellicle formation. Continued expression of the motility complex in mature biofilms is unusual and suggests a role for the flagellar apparatus in the biofilm phenotype.


Journal of the American Chemical Society | 2009

Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor

Mirza Ia; Brahm J. Yachnin; Shaozhao Wang; Stephan Grosse; Hélène Bergeron; Akihiro Imura; Hiroaki Iwaki; Yoshie Hasegawa; Peter C. K. Lau; Albert M. Berghuis

Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O(2) as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP(+) in two distinct states, to resolutions of 2.3 and 2.2 A. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.


Journal of Bacteriology | 2006

Biosynthesis of the N-Linked Glycan in Campylobacter jejuni and Addition onto Protein through Block Transfer

Jack B. Kelly; Harold C. Jarrell; Lorna Millar; Luc Tessier; Laura M. Fiori; Peter C. K. Lau; Brenda Allan; Christine M. Szymanski

In eukaryotes, N-linked protein glycosylation is a universal modification involving addition of preformed oligosaccharides to select Asn-Xaa-Ser/Thr motifs and influencing multiple biological events. We recently demonstrated that Campylobacter jejuni is the first member of the Bacteria to possess an N-linked glycan pathway. In this study, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to probe and quantitate C. jejuni N-glycan biosynthesis in vivo. To confirm HR-MAS NMR findings, glycosylation mutants were screened for chicken colonization potential, and glycoproteins were examined by mass spectrometry and lectin blotting. Consistent with the mechanism in eukaryotes, the combined data indicate that bacterial glycans are assembled en bloc, emphasizing the evolutionary conservation of protein N glycosylation. We also show that under the conditions examined, PglG plays no role in glycan biosynthesis, PglI is the glucosyltransferase and the putative ABC transporter, and WlaB (renamed PglK) is required for glycan assembly. These studies underpin the mechanism of N-linked protein glycosylation in Bacteria and provide a simple model system for investigating protein glycosylation and for exploitation in glycoengineering.


Applied and Environmental Microbiology | 2002

Cloning and Characterization of a Gene Cluster Involved in Cyclopentanol Metabolism in Comamonas sp. Strain NCIMB 9872 and Biotransformations Effected by Escherichia coli-Expressed Cyclopentanone 1,2-Monooxygenase

Hiroaki Iwaki; Yoshie Hasegawa; Shaozhao Wang; Margaret M. Kayser; Peter C. K. Lau

ABSTRACT Cyclopentanone 1,2-monooxygenase, a flavoprotein produced by Pseudomonas sp. strain NCIMB 9872 upon induction by cyclopentanol or cyclopentanone (M. Griffin and P. W. Trudgill, Biochem. J. 129:595-603, 1972), has been utilized as a biocatalyst in Baeyer-Villiger oxidations. To further explore this biocatalytic potential and to discover new genes, we have cloned and sequenced a 16-kb chromosomal locus of strain 9872 that is herein reclassified as belonging to the genus Comamonas. Sequence analysis revealed a cluster of genes and six potential open reading frames designated and grouped in at least four possible transcriptional units as (orf11-orf10-orf9)-(cpnE-cpnD-orf6-cpnC)-(cpnR-cpnB-cpnA)-(orf3-orf4 [partial 3′ end]). The cpnABCDE genes encode enzymes for the five-step conversion of cyclopentanol to glutaric acid catalyzed by cyclopentanol dehydrogenase, cyclopentanone 1,2-monooxygenase, a ring-opening 5-valerolactone hydrolase, 5-hydroxyvalerate dehydrogenase, and 5-oxovalerate dehydrogenase, respectively. Inactivation of cpnB by using a lacZ-Kmr cassette resulted in a strain that was not capable of growth on cyclopentanol or cyclopentanone as a sole carbon and energy source. The presence of σ54-dependent regulatory elements in front of the divergently transcribed cpnB and cpnC genes supports the notion that cpnR is a regulatory gene of the NtrC type. Knowledge of the nucleotide sequence of the cpn genes was used to construct isopropyl-β-thio-d-galactoside-inducible clones of Escherichia coli cells that overproduce the five enzymes of the cpn pathway. The substrate specificities of CpnA and CpnB were studied in particular to evaluate the potential of these enzymes and establish the latter recombinant strain as a bioreagent for Baeyer-Villiger oxidations. Although frequently nonenantioselective, cyclopentanone 1,2-monooxygenase was found to exhibit a broader substrate range than the related cyclohexanone 1,2-monooxygenase from Acinetobacter sp. strain NCIMB 9871. However, in a few cases opposite enantioselectivity was observed between the two biocatalysts.


Molecular Genetics and Genomics | 1995

Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1

Ying Wang; Merriann Rawlings; David T. Gibson; Diane Labbé; Hélène Bergeron; Roland Brousseau; Peter C. K. Lau

A 3 kb DNA region upstream of the toluene degradation (tod) genes, todFC1C2BADEGIH, in Pseudomonas putida F1 (PpF1) was sequenced. Two divergently arranged open reading frames, todR and todX, were identified. A toluene-inducible promoter was localized in front of todX, and the transcription start point was mapped. This promoter is probably responsible for the expression of all tod structural genes. TodX was found to be a membrane protein. Its predicted amino acid sequence (453 residues; Mr 48265) exhibits considerable similarity with the FadL protein of Escherichia coli, an outer membrane protein required for binding and transport of long-chain fatty acids. An apparent function of TodX is likely to be involved in facilitating the delivery of exogenous toluene inside the PpF1 cells. The sequence of TodR (100 residues) exhibits extensive homology with the DNA-binding domain of transcriptional activators of the LysR family, but todR was found to have a negligible role in tod gene regulation.


Journal of Microbiological Methods | 2002

Exposing culprit organic pollutants: A review

Angela Keane; Pauline Phoenix; Subhasis Ghoshal; Peter C. K. Lau

There is a continuing need for monitoring the health of the environment due to the presence of pollutants. Here, we review the development and attributes of biosensors by which bacteria have been genetically modified to express the luminescence genes, i.e. to glow, in a quantified manner, in response to pollutants. We have concentrated on the detection of organic hydrocarbon pollutants and discussed the molecular mechanisms by which some of these chemicals act as effector molecules on the respective regulatory systems. The future of environmental biosensors is predictably bright. As more knowledge is gathered on the sensing regulatory component, the possibility of developing targeted or pollutant-specific biosensors is promising. Moreover, the repertoire of biosensors for culprit organic pollutants is expected to be enlarged through advances in genomics technology and identification of new sensory or receptor molecules. The need for pollutant detection at concentrations in the parts per trillion range or biosensors configured in a nanoscale is anticipated.


Applied and Environmental Microbiology | 2006

Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidations of cyclic ketones.

Hiroaki Iwaki; Shaozhao Wang; Stephan Grosse; Hélène Bergeron; Ayako Nagahashi; Jittiwud Lertvorachon; Jianzhong Yang; Yasuo Konishi; Yoshie Hasegawa; Peter C. K. Lau

ABSTRACT Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of ∼60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 μmol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains ∼1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (Km = 8 μM versus Km = 24 μM). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C11 to C15 ketones, methyl-substituted C5 and C6 ketones, and bicyclic ketones, such as decalone and β-tetralone. CPDMO has the highest affinity (Km = 5.8 μM) and the highest catalytic efficiency (kcat/Km ratio of 7.2 × 105 M−1 s−1) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.


Applied and Environmental Microbiology | 2003

Prokaryotic Homologs of the Eukaryotic 3-Hydroxyanthranilate 3,4-Dioxygenase and 2-Amino-3-Carboxymuconate-6-Semialdehyde Decarboxylase in the 2-Nitrobenzoate Degradation Pathway of Pseudomonas fluorescens Strain KU-7

Takamichi Muraki; Masami Taki; Yoshie Hasegawa; Hiroaki Iwaki; Peter C. K. Lau

ABSTRACT The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, respectively. The NbaC enzyme carries out the oxidation of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate-6-semialdehyde, while the NbaD enzyme catalyzes the decarboxylation of the latter compound to 2-aminomuconate-6-semialdehyde. The NbaC and NbaD proteins were overexpressed in Escherichia coli and characterized. The substrate specificity of the 23.8-kDa NbaC protein was found to be restricted to 3-hydroxyanthranilate. In E. coli, this enzyme oxidizes 3-hydroxyanthranilate with a specific activity of 8 U/mg of protein. Site-directed mutagenesis experiments revealed the essential role of two conserved histidine residues (His52 and His96) in the NbaC sequence. The NbaC activity is also dependent on the presence of Fe2+ but is inhibited by other metal ions, such as Zn2+, Cu2+, and Cd2+. The NbaD protein was overproduced as a 38.7-kDa protein, and its specific activity towards 2-amino-3-carboxymuconate-6-semialdehyde was 195 U/mg of protein. Further processing of 2-aminomuconate-6-semialdehyde to pyruvic acid and acetyl coenzyme A was predicted to proceed via the activities of NbaE, NbaF, NbaG, NbaH, NbaI, and NbaJ. The predicted amino acid sequences of these proteins are highly homologous to those of the corresponding proteins involved in the metabolism of 2-aminophenol (e.g., AmnCDEFGH in Pseudomonas sp. strain AP-3). The NbaR-encoding gene is predicted to have a regulatory function of the LysR family type. The function of the product of the small open reading frame, NbaX, like the homologous sequences in the nitrobenzene or 2-aminophenol metabolic pathway, remains elusive.


Journal of Bacteriology | 2007

Characterization of a Pseudomonad 2-Nitrobenzoate Nitroreductase and Its Catabolic Pathway-Associated 2-Hydroxylaminobenzoate Mutase and a Chemoreceptor Involved in 2-Nitrobenzoate Chemotaxis

Hiroaki Iwaki; Takamichi Muraki; Shun Ishihara; Yoshie Hasegawa; Kathryn N. Rankin; Traian Sulea; Jason Boyd; Peter C. K. Lau

Pseudomonas fluorescens strain KU-7 is a prototype microorganism that metabolizes 2-nitrobenzoate (2-NBA) via the formation of 3-hydroxyanthranilate (3-HAA), a known antioxidant and reductant. The initial two steps leading to the sequential formation of 2-hydroxy/aminobenzoate and 3-HAA are catalyzed by a NADPH-dependent 2-NBA nitroreductase (NbaA) and 2-hydroxylaminobenzoate mutase (NbaB), respectively. The 216-amino-acid protein NbaA is 78% identical to a plasmid-encoded hypothetical conserved protein of Polaromonas strain JS666; structurally, it belongs to the homodimeric NADH:flavin mononucleotide (FMN) oxidoreductase-like fold family. Structural modeling of complexes with the flavin, coenzyme, and substrate suggested specific residues contributing to the NbaA catalytic activity, assuming a ping-pong reaction mechanism. Mutational analysis supports the roles of Asn40, Asp76, and Glu113, which are predicted to form the binding site for a divalent metal ion implicated in FMN binding, and a role in NADPH binding for the 10-residue insertion in the beta5-alpha2 loop. The 181-amino-acid sequence of NbaB is 35% identical to the 4-hydroxylaminobenzoate lyases (PnbBs) of various 4-nitrobenzoate-assimilating bacteria, e.g., Pseudomonas putida strain TW3. Coexpression of nbaB with nbaA in Escherichia coli produced a small amount of 3-HAA from 2-NBA, supporting the functionality of the nbaB gene. We also showed by gene knockout and chemotaxis assays that nbaY, a chemoreceptor NahY homolog located downstream of the nbaA gene, is responsible for strain KU-7 being attracted to 2-NBA. NbaY is the first chemoreceptor in nitroaromatic metabolism to be identified, and this study completes the gene elucidation of 2-NBA metabolism that is localized within a 24-kb chromosomal locus of strain KU-7.

Collaboration


Dive into the Peter C. K. Lau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Grosse

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane Labbé

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krista Morley

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Shaozhao Wang

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hannes Leisch

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge