Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. Lippert is active.

Publication


Featured researches published by Peter C. Lippert.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Constraints on the early uplift history of the Tibetan Plateau

Chengshan Wang; Xixi Zhao; Zhifei Liu; Peter C. Lippert; Stephan A. Graham; Robert S. Coe; Haisheng Yi; Lidong Zhu; Shun Liu; Yalin Li

The surface uplift history of the Tibetan Plateau and Himalaya is among the most interesting topics in geosciences because of its effect on regional and global climate during Cenozoic time, its influence on monsoon intensity, and its reflection of the dynamics of continental plateaus. Models of plateau growth vary in time, from pre-India-Asia collision (e.g., ≈100 Ma ago) to gradual uplift after the India-Asia collision (e.g., ≈55 Ma ago) and to more recent abrupt uplift (<7 Ma ago), and vary in space, from northward stepwise growth of topography to simultaneous surface uplift across the plateau. Here, we improve that understanding by presenting geologic and geophysical data from north-central Tibet, including magnetostratigraphy, sedimentology, paleocurrent measurements, and 40Ar/39Ar and fission-track studies, to show that the central plateau was elevated by 40 Ma ago. Regions south and north of the central plateau gained elevation significantly later. During Eocene time, the northern boundary of the protoplateau was in the region of the Tanggula Shan. Elevation gain started in pre-Eocene time in the Lhasa and Qiangtang terranes and expanded throughout the Neogene toward its present southern and northern margins in the Himalaya and Qilian Shan.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia

Douwe J. J. van Hinsbergen; Peter C. Lippert; Guillaume Dupont-Nivet; Nadine McQuarrie; Pavel V. Doubrovine; Wim Spakman; Trond H. Torsvik

Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. Since 52 Ma, the two plates have converged up to 3,600 ± 35 km, yet the upper crustal shortening documented from the geological record of Asia and the Himalaya is up to approximately 2,350-km less. Here we show that the discrepancy between the convergence and the shortening can be explained by subduction of highly extended continental and oceanic Indian lithosphere within the Himalaya between approximately 50 and 25 Ma. Paleomagnetic data show that this extended continental and oceanic “Greater India” promontory resulted from 2,675 ± 700 km of North–South extension between 120 and 70 Ma, accommodated between the Tibetan Himalaya and cratonic India. We suggest that the approximately 50 Ma “India”–Asia collision was a collision of a Tibetan-Himalayan microcontinent with Asia, followed by subduction of the largely oceanic Greater India Basin along a subduction zone at the location of the Greater Himalaya. The “hard” India–Asia collision with thicker and contiguous Indian continental lithosphere occurred around 25–20 Ma. This hard collision is coincident with far-field deformation in central Asia and rapid exhumation of Greater Himalaya crystalline rocks, and may be linked to intensification of the Asian monsoon system. This two-stage collision between India and Asia is also reflected in the deep mantle remnants of subduction imaged with seismic tomography.


Tectonics | 2011

Restoration of Cenozoic deformation in Asia and the size of Greater India

Douwe J. J. van Hinsbergen; Paul Kapp; Guillaume Dupont-Nivet; Peter C. Lippert; Peter G. DeCelles; Trond H. Torsvik

A long‐standing problem in the geological evolution of the India‐Asia collision zone is how and where convergence between India and Asia was accommodated since collision. Proposed collision ages vary from 65 to 35 Ma, although most data sets are consistent with collision being underway by 50 Ma. Plate reconstructions show that since 50 Ma ∼2400-3200 km (west to east) of India‐Asia convergence occurred, much more than the 450-900 km of documented Himalayan shortening. Current models therefore suggest that most post‐50 Ma convergence was accommodated north of the Indus‐Yarlung suture zone. We review kinematic data and construct an updated restoration of Cenozoic Asian deformation to test this assumption. We show that geologic studies have documented 600-750 km of N‐S Cenozoic shortening across, and north of, the Tibetan Plateau. The Pamir‐Hindu Kush region accommodated ∼1050 km of N‐S convergence. Geological evidence from Tibet is inconsistent with models that propose 750-1250 km of eastward extrusion of Indochina. Approximately 250 km of Indochinese extrusion from 30 to 20 Ma of Indochina suggested by SE Asia reconstructions can be reconciled by dextral transpression in eastern Tibet. We use our reconstruction to calculate the required size of Greater India as a function of collision age. Even with a 35 Ma collision age, the size of Greater India is 2-3 times larger than Himalayan shortening. For a 50 Ma collision, the size of Greater India from west to east is ∼1350-2600 km, consistent with robust paleomagnetic data from upper Cretaceous‐Paleocene Tethyan Himalayan strata. These estimates for the size of Greater India far exceed documented shortening in the Himalaya. We conclude that most of Greater India was consumed by subduction or underthrusting, without leaving a geological record that has been recognized at the surface.


Paleoceanography | 2007

A biogenic origin for anomalous fine‐grained magnetic material at the Paleocene‐Eocene boundary at Wilson Lake, New Jersey

Peter C. Lippert; James C. Zachos

[1] The Paleocene-Eocene Thermal Maximum, which occurred � 55.5 Ma, was caused by a massive release of carbon, as indicated by an � 3% negative carbon isotope excursion recorded in the marine, atmospheric, and terrestrial reservoirs. One suggested source for the carbon, a cometary impactor, is based on the sudden appearance and high concentration of single-domain (SD) magnetite in Paleocene-Eocene (P-E) boundary cores from the North Atlantic continental margin. We evaluate the potential sources of SD magnetite at the P-E boundary by presenting new magnetic hysteresis, low-temperature magnetic remanence, and transmission electron microscopy data from the North Atlantic coastal ocean. Our results show a similar increase in SD material but demonstrate that the magnetic material has a biogenic origin. These findings indicate that the high concentrations of SD magnetite immediately above the P-E boundary are the result of unusual accumulations and/or preservation of magnetotactic bacteria. Such bacteria typically occupy the oxic-anoxic transition zone near the sediment-water interface or in the water column. The high abundances of SD magnetite in sediments from across the shelf may be an artifact of nonsteady state redox conditions and exceptional preservation of SD magnetite. It may also indicate that the oxic-anoxic redox boundary shifted into the water column. The latter explanation implies transient eutrophy of the coastal ocean in this region, most likely due to seasonally enhanced runoff, and increased stratification and nutrient loading.


Geology | 2016

Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia

Zhenyu Li; Lin Ding; Peter C. Lippert; Peiping Song; Yahui Yue; Douwe J. J. van Hinsbergen

The Mesozoic plate tectonic history of Gondwana-derived crustal blocks of the Tibetan Plateau is hotly debated, but so far, paleomagnetic constraints quantifying their paleolatitude drift history remain sparse. Here, we compile existing data published mainly in Chinese literature and provide a new, high-quality, well-dated paleomagnetic pole from the ca. 180 Ma Sangri Group volcanic rocks of the Lhasa terrane that yields a paleolatitude of 3.7°S ± 3.4°. This new pole confirms a trend in the data that suggests that Lhasa drifted away from Gondwana in Late Triassic time, instead of Permian time as widely perceived. A total northward drift of ∼4500 km between ca. 220 and ca. 130 Ma yields an average south-north plate motion rate of 5 cm/yr. Our results are consistent with either an Indian or an Australian provenance of Lhasa.


Journal of Geophysical Research | 2015

Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?

Wentao Huang; Guillaume Dupont-Nivet; Peter C. Lippert; Douwe J. J. van Hinsbergen; Mark J. Dekkers; Zhaojie Guo; Ross Waldrip; Xiaochun Li; Xiaoran Zhang; Dongdong Liu; Paul Kapp

Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5°N to 30°N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic rocks in the Nanmulin Basin, which previously yielded data suggesting a low paleolatitude (~10°N). New zircon U-Pb dates indicate an age of ~52 Ma. Negative fold tests, however, demonstrate that the isolated characteristic remanent magnetizations, with notably varying inclinations, are not primary. Rock magnetic analyses, end-member modeling of isothermal remanent magnetization acquisition curves, and petrographic observations are consistent with variable degrees of posttilting remagnetization due to low-temperature alteration of primary magmatic titanomagnetite and the formation of secondary pigmentary hematite that unblock simultaneously. Previously reported paleomagnetic data from the Nanmulin Basin implying low paleolatitude should thus not be used to estimate the time and latitude of the India-Asia collision. We show that the paleomagnetic inclinations vary linearly with the contribution of secondary hematite to saturation isothermal remanent magnetization. We tentatively propose a new method to recover a primary remanence with inclination of 38.1° (35.7°, 40.5°) (95% significance) and a secondary remanence with inclination of 42.9° (41.5°,44.4°) (95% significance). The paleolatitude defined by the modeled primary remanence—21°N (19.8°N, 23.1°N)—is consistent with the regional compilation of published results from pristine volcanic rocks and sedimentary rocks of the upper Linzizong Group corrected for inclination shallowing. The start of the Tibetan Himalaya-Asia collision was situated at ~20°N and took place by ~50 Ma.


Tectonics | 2015

What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou Basin, Tibet)

Wentao Huang; Guillaume Dupont-Nivet; Peter C. Lippert; Douwe J. J. van Hinsbergen; Mark J. Dekkers; Ross Waldrip; Morgan Ganerød; Xiaochun Li; Zhaojie Guo; Paul Kapp

The Paleogene latitude of the Lhasa terrane (southern Tibet) can constrain the age of the onset of the India-Asia collision. Estimates for this latitude, however, vary from 5°N to 30°N, and thus here, we reassess the geochronology and paleomagnetism of Paleogene volcanic rocks from the Linzizong Group in the Linzhou Basin. The lower and upper parts of the section previously yielded particularly conflicting ages and paleolatitudes. We report consistent 40Ar/39Ar and U-Pb zircon dates of ~52 Ma for the upper Linzizong, and 40Ar/39Ar dates (~51 Ma) from the lower Linzizong are significantly younger than U-Pb zircon dates (64-63 Ma), suggesting that the lower Linzizong was thermally and/or chemically reset. Paleomagnetic results from 24 sites in lower Linzizong confirm a low apparent paleolatitude of ~5°N, compared to the upper part (~20°N) and to underlying Cretaceous strata (~20°N). Detailed rock magnetic analyses, end-member modeling of magnetic components, and petrography from the lower and upper Linzizong indicate widespread secondary hematite in the lower Linzizong, whereas hematite is rare in upper Linzizong. Volcanic rocks of the lower Linzizong have been hydrothermally chemically remagnetized, whereas the upper Linzizong retains a primary remanence. We suggest that remagnetization was induced by acquisition of chemical and thermoviscous remanent magnetizations such that the shallow inclinations are an artifact of a tilt correction applied to a secondary remanence in lower Linzizong. We estimate that the Paleogene latitude of Lhasa terrane was 20 ± 4°N, consistent with previous results suggesting that India-Asia collision likely took place by ~52 Ma at ~20°N.


Geophysical Research Letters | 2015

Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone

Wentao Huang; Douwe J. J. van Hinsbergen; Peter C. Lippert; Zhaojie Guo; Guillaume Dupont-Nivet

Several solutions have been proposed to explain the long-standing kinematic observation that postcollisional upper crustal shortening within the Himalaya and Asia is much less than the magnitude of India-Asia convergence. Here we implement these hypotheses in global plate reconstructions and test paleolatitudes predicted by the global apparent polar wander path against independent, and the most robust paleomagnetic data. Our tests demonstrate that (1) reconstructed 600–750 km postcollisional intra-Asian shortening is a minimum value; (2) a 52 Ma collision age is only consistent with paleomagnetic data if intra-Asian shortening was ~900 km; a ~56–58 Ma collision age requires greater intra-Asian shortening; (3) collision ages of 34 or 65 Ma incorrectly predict Late Cretaceous and Paleogene paleolatitudes of the Tibetan Himalaya (TH); and (4) Cretaceous counterclockwise rotation of India cannot explain the paleolatitudinal divergence between the TH and India. All hypotheses, regardless of collision age, require major Cretaceous extension within Greater India.


Journal of Geophysical Research | 2017

Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision

Wentao Huang; Peter C. Lippert; Mike Jackson; Mark J. Dekkers; Yang Zhang; Juan Li; Zhaojie Guo; Paul Kapp; Douwe J. J. van Hinsbergen

Netherlands Organization for Scientific Research (NWO) [825.15.016]; Institute for Rock Magnetism (IRM) at the University of Minnesota - Instruments and Facilities Program of NSF


Journal of Geophysical Research | 2017

Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations

Wentao Huang; Peter C. Lippert; Yang Zhang; Mike Jackson; Mark J. Dekkers; Juan Li; Xiumian Hu; Bo Zhang; Zhaojie Guo; Douwe J. J. van Hinsbergen

Netherlands Organization for Scientific Research (NWO) with a Rubicon grant [825.15.016]; Institute for Rock Magnetism (IRM) at the University of Minnesota; Instruments and Facilities program of NSF; ERC Starting Grant [306810]; NWO VIDI [864.11.004]

Collaboration


Dive into the Peter C. Lippert's collaboration.

Top Co-Authors

Avatar

Douwe J. J. van Hinsbergen

Norwegian Academy of Science and Letters

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Kapp

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Coe

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian R. Jicha

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge