Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. Meighan is active.

Publication


Featured researches published by Peter C. Meighan.


Journal of Neurochemistry | 2006

Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity

Starla E. Meighan; Peter C. Meighan; Papiya Choudhury; Christopher J. Davis; Mikel L. Olson; Peter A. Zornes; John W. Wright; Joseph W. Harding

Rats learning the Morris water maze exhibit hippocampal changes in synaptic morphology and physiology that manifest as altered synaptic efficacy. Learning requires structural changes in the synapse, and multiple cell adhesion molecules appear to participate. The activity of these cell adhesion molecules is, in large part, dependent on their interaction with the extracellular matrix (ECM). Given that matrix metalloproteinases (MMPs) are responsible for transient alterations in the ECM, we predicted that MMP function is critical for hippocampal‐dependent learning. In support of this, it was observed that hippocampal MMP‐3 and ‐9 increased transiently during water maze acquisition as assessed by western blotting and mRNA analysis. The ability of the NMDA receptor channel blocker MK801 to attenuate these changes indicated that the transient MMP changes were in large part dependent upon NMDA receptor activation. Furthermore, inhibition of MMP activity with MMP‐3 and ‐9 antisense oligonucleotides and/or MMP inhibitor FN‐439 altered long‐term potentiation and prevented acquisition in the Morris water maze. The learning‐dependent MMP alterations were shown to modify the stability of the actin‐binding protein cortactin, which plays an essential role in regulating the dendritic cytoskeleton and synaptic efficiency. Together these results indicate that changes in MMP function are critical to synaptic plasticity and hippocampal‐dependent learning.


Journal of Neurochemistry | 2007

Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/CA1 synapses

Peter C. Meighan; Starla E. Meighan; Christopher J. Davis; John W. Wright; Joseph W. Harding

It is increasingly evident that matrix metalloproteinases (MMPs), a family of zinc containing extracellular endopeptidases, participate in processes supporting hippocampal synaptic plasticity. The purpose of this study was to further the understanding of MMPs involvement in hippocampal plasticity. Acute hippocampal slices, generated from 20‐ to 30‐day‐old male Sprague–Dawley rats, were subjected to various electrophysiologic stimulatory paradigms to produce either short‐term or long‐term modifications to synaptic efficacy. Slices exposed to broad‐spectrum MMP inhibitor, FN‐439, exhibited impairments in paired‐pulse facilitation, theta‐burst facilitation, and long‐term depression. Additionally, we observed that MMP inhibition impaired both the induction and stability of long‐term potentiation (LTP). Furthermore, evidence indicated that the effect of MMP inhibition on LTP maintenance is dependent upon integrin‐directed adhesion, whereas the effects of MMP inhibition on LTP induction are independent of integrin‐directed adhesion. Together, these data support a generalized role for MMPs in short‐term and long‐term hippocampal plasticity and indicate that MMPs are a necessary facet of integrin‐mediated cell adhesion supporting LTP stabilization.


Brain Research | 2003

Ethanol-induced impairment of spatial memory and brain matrix metalloproteinases.

John W. Wright; Alex J Masino; Jennifer R Reichert; Gary D Turner; Starla E. Meighan; Peter C. Meighan; Joseph W. Harding

The formation of spatial memory appears to be dependent upon an intact hippocampus capable of the specific biochemical changes associated with synaptic remodeling. Hippocampal damage results in the disruption of synaptic remodeling and the acquisition of spatial memory tasks. Ethanol also disrupts normal hippocampal functioning and spatial memory. The present investigation established a dose-response relationship between ethanol treatment and impairment of spatial memory as measured using the circular water maze task. Intraperitoneal ethanol doses of 1.5 and 2 g/kg significantly increased the latency and distance swam to find the submerged pedestal as compared with a 1 g/kg dose, and 0.15 M NaCl vehicle control treatments. On days 2, 4, and 6 of acquisition animals were sacrificed and brain tissues were retained from the hippocampus, prefrontal neocortex, and cerebellum for measurement of matrix metalloproteinases (MMPs). The results indicated that ethanol treatment interfered with MMP-9, but not MMP-2, activity in the hippocampus, and to a lesser degree in the prefrontal cortex. No changes in the cerebellum were measured. Elevations in MMP activity appear to be a prerequisite to reconfiguration of extracellular matrix cell adhesion molecules thought to be important in the process of synaptic plasticity, which in turn appears to be necessary for memory consolidation. Thus, ethanol-induced impairment in the acquisition of spatial memory tasks may, in part, be due to disruption of brain MMP activity.


Neuroscience | 2006

AT4 receptor activation increases intracellular calcium influx and induces a non-N-methyl-d-aspartate dependent form of long-term potentiation

Christopher J. Davis; Enikö A. Kramár; A. De; Peter C. Meighan; S.M. Simasko; John W. Wright; Joseph W. Harding

The angiotensin 4 receptor (AT4) subtype is heavily distributed in the dentate gyrus and CA1-CA3 subfields of the hippocampus. Neuronal pathways connecting these subfields are believed to be activated during learning and memory processing. ur laboratory previously demonstrated that application of the AT4 agonist, Norleucine1-angiotensin IV, enhanced baseline synaptic transmission and long-term potentiation, whereas perfusion with the AT4 antagonist, Norleucine1-Leu3-psi(CH2-NH2)3-4-angiotensin IV disrupted long-term potentiation stabilization in area CA1. The objective of the present study was to identify the mechanism(s) responsible for Norleucine1-angiotensin IV-induced increase in hippocampal long-term potentiation. Hippocampal slices perfused with Norleucine1-angiotensin IV for 20 min revealed a notable increase in baseline responses in a non-reversible manner and were blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt. Infusions of Norleucine1-angiotensin IV prior to, but not after theta burst stimulation, significantly enhanced long-term potentiation compared with control slices. Further, N-methyl-D-aspartate receptor-independent long-term potentiation could be induced by tetanization during the perfusion of Norleucine1-angiotensin IV in the presence of the N-methyl-D-aspartate antagonist, D,L-2-amino-5-phosphonovaleric acid. Blockade of select voltage dependent calcium channels significantly reduced Norleucine1-angiotensin IV-induced increase in baseline responses and subsequent long-term potentiation suggesting that AT4 receptor activation increases intracellular calcium levels via altering voltage dependent calcium channels and triggers an N-methyl-D-aspartate-independent form of long-term potentiation. In support of this notion the application of Nle1-angiotensin IV to cultured rat hippocampal neurons resulted in increased intracellular calcium derived exclusively from extracellular sources. Consistent with these observations Nle1-angiotensin IV was capable of augmenting the uptake of 45Ca2+ into rat hippocampal slices. Taken together, these data indicate that increased calcium influx through postsynaptic calcium channels contribute to Norleucine1-angiotensin IV-induced enhancement of long-term potentiation.


Regulatory Peptides | 2008

Hippocampal MMP-3 elevation is associated with passive avoidance conditioning

Mikel L. Olson; Peter C. Meighan; Travis E. Brown; Aaron L. Asay; Caroline C. Benoist; Joseph W. Harding; John W. Wright

Alterations in synaptic efficiency that underlie learning and memory consolidation appear to require an accompanying reconfiguration of the extracellular matrix (ECM). This restructuring of the ECM is carried out, in part, by a family of enzymes called, the matrix metalloproteinases, which includes matrix metalloproteinase-3 (MMP-3: stromelysin-1). The present study determined that a transient elevation in hippocampal MMP-3 expression occurred in rats following associative learning in the passive avoidance (PA) task. No change in MMP-3 was observed when rats were exposed either to the behavioral apparatus or the training stimulus alone. Furthermore, when an MMP-3 inhibitor was administered prior to PA training, dose-dependent learning deficits were observed, suggesting a causal relationship between learning-induced hippocampal MMP-3 elevation and associative memory formation. These findings suggest that increased hippocampal MMP-3 expression is an event that may play an important role in synaptic plasticity and memory consolidation.


Neuroscience Letters | 2006

REM sleep deprivation attenuates actin-binding protein cortactin: a link between sleep and hippocampal plasticity.

Christopher J. Davis; Peter C. Meighan; Ping Taishi; James M. Krueger; Joseph W. Harding; John W. Wright

Rapid eye-movement sleep (REMS) is thought to affect synaptic plasticity. Cortactin is a cytoskeletal protein critically involved in the regulation of actin branching and stabilization including the actin backbone of dendritic spines. Hippocampal cortactin levels, phosphorylation, and processing appear to be altered during learning and long-term potentiation (LTP); consistent with a role for cortactin in the dendritic restructuring that accompanies synaptic plasticity. In this study juvenile male Sprague-Dawley rats were selectively REMS-deprived (RD) for 48 h by the flowerpot method. Cage control (CC) and large pedestal control (PC) animals were used for comparison. Animals were euthanized immediately, or 12 h, after removal from the pedestal. The hippocampus was dissected, flash-frozen, and stored for subsequent Western blot or quantitative RT-PCR analysis of cortactin. Cortactin mRNA/cDNA levels initially rose in PC and RD rats but returned to CC levels by 12 h after removal from the pedestal. Predictably cortactin protein levels were initially unchanged but were up-regulated after 12 h. The PC group had more total and tyrosine-phosphorylated cortactin protein expression than the RD and CC groups. This increase in cortactin was likely due to the exposure of the rats to the novel environment of the deprivation chambers thus triggering plasticity events. The lack of REMS, however, severely hampered cortactin protein up-regulation and phosphorylation observed in the PC group suggesting an attenuation of plasticity-related events. Thus, these data support a functional link between REMS and cytoskeletal reorganization in the hippocampus, a process that is essential for synaptic plasticity.


Sleep | 2011

State-Dependent Changes in Cortical Gain Control as Measured by Auditory Evoked Responses to Varying Intensity Stimuli

Derrick J. Phillips; Jennifer L. Schei; Peter C. Meighan; David M. Rector

STUDY OBJECTIVES Auditory evoked potential (AEP) components correspond to sequential activation of brain structures within the auditory pathway and reveal neural activity during sensory processing. To investigate state-dependent modulation of stimulus intensity response profiles within different brain structures, we assessed AEP components across both stimulus intensity and state. DESIGN We implanted adult female Sprague-Dawley rats (N = 6) with electrodes to measure EEG, EKG, and EMG. Intermittent auditory stimuli (6-12 s) varying from 50 to 75 dBa were delivered over a 24-h period. Data were parsed into 2-s epochs and scored for wake/sleep state. RESULTS All AEP components increased in amplitude with increased stimulus intensity during wake. During quiet sleep, however, only the early latency response (ELR) showed this relationship, while the middle latency response (MLR) increased at the highest 75 dBa intensity, and the late latency response (LLR) showed no significant change across the stimulus intensities tested. During rapid eye movement sleep (REM), both ELR and LLR increased, similar to wake, but MLR was severely attenuated. CONCLUSIONS Stimulation intensity and the corresponding AEP response profile were dependent on both brain structure and sleep state. Lower brain structures maintained stimulus intensity and neural response relationships during sleep. This relationship was not observed in the cortex, implying state-dependent modification of stimulus intensity coding. Since AEP amplitude is not modulated by stimulus intensity during sleep, differences between paired 75/50 dBa stimuli could be used to determine state better than individual intensities.


Channels | 2012

Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels

Peter C. Meighan; Starla E. Meighan; Elizabeth D. Rich; R. Lane Brown; Michael D. Varnum

Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.


Behavioural Brain Research | 2009

Habituation-induced neural plasticity in the hippocampus and prefrontal cortex mediated by MMP-3.

John W. Wright; Peter C. Meighan; Travis E. Brown; Roberta V. Wiediger; Barbara A. Sorg; Joseph W. Harding

Head-shake response (HSR) habituation was presently used to investigate the phenomena of spontaneous recovery and neural plasticity. Independent groups of rats were presented with five consecutive habituation sessions separated by inter-session intervals (ISIs) of 2, 24 or 72 h. At the conclusion of testing hippocampus and prefrontal cortex tissue samples were collected for determination of matrix metalloproteinase-3 (MMP-3:stromelysin-1) expression as a marker of neural plasticity. The results indicated that by the fifth session the 2 h ISI group showed no spontaneous recovery, the 72 h ISI group revealed nearly complete spontaneous recovery; while the 24 h ISI group showed intermediate recovery. MMP-3 expression in the hippocampus and prefrontal cortex was elevated in the 2 and 72 h ISI groups, but not in the 24 h group. A second experiment utilized 7-day osmotic pumps to intracerebroventricularly infuse an MMP-3 inhibitor for 6 days. The animals were then tested on the seventh day using the 2 h ISI protocol. Delivery of the MMP-3 inhibitor facilitated spontaneous recovery, thus compromising the animals ability to appropriately habituate. This effect was accompanied by a significant inhibition of hippocampus and prefrontal cortex MMP-3 expression. These results suggest that elevations in hippocampus and prefrontal cortex MMP-3 expression contribute to this simplest form of learning and may be a mechanism underlying spontaneous recovery.


Biochemistry | 2013

Cyclic nucleotide-gated channel subunit glycosylation regulates matrix metalloproteinase-dependent changes in channel gating.

Starla E. Meighan; Peter C. Meighan; Elizabeth D. Rich; R. Lane Brown; Michael D. Varnum

Cyclic-nucleotide gated (CNG) channels are essential for phototransduction within retinal photoreceptors. We have demonstrated previously that the enzymatic activity of matrix metalloproteinase-2 and -9, members of the matrix metalloproteinase (MMP) family of extracellular, Ca(2+)- and Zn(2+)-dependent proteases, enhances the ligand sensitivity of both rod (CNGA1 and CNGB1) and cone (CNGA3 and CNGB3) CNG channels. Additionally, we have observed a decrease in the maximal CNG channel current (Imax) that begins late during MMP-directed gating changes. Here we demonstrate that CNG channels become nonconductive after prolonged MMP exposure. Concurrent with the loss of conductive channels is the increased relative contribution of channels exhibiting nonmodified gating properties, suggesting the presence of a subpopulation of channels that are protected from MMP-induced gating effects. CNGA subunits are known to possess one extracellular core glycosylation site, located at one of two possible positions within the turret loop near the pore-forming region. Our results indicate that CNGA glycosylation can impede MMP-dependent modification of CNG channels. Furthermore, the relative position of the glycosylation site within the pore turret influences the extent of MMP-dependent proteolysis. Glycosylation at the site found in CNGA3 subunits was found to be protective, while glycosylation at the bovine CNGA1 site was not. Relocating the glycosylation site in CNGA1 to the position found in CNGA3 recapitulated CNGA3-like protection from MMP-dependent processing. Taken together, these data indicate that CNGA glycosylation may protect CNG channels from MMP-dependent proteolysis, consistent with MMP modification of channel function having a requirement for physical access to the extracellular face of the channel.

Collaboration


Dive into the Peter C. Meighan's collaboration.

Top Co-Authors

Avatar

John W. Wright

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Joseph W. Harding

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Michael D. Varnum

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Starla E. Meighan

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Rector

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Schei

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Elizabeth D. Rich

Washington State University

View shared research outputs
Top Co-Authors

Avatar

R. Lane Brown

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge