Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Convey is active.

Publication


Featured researches published by Peter Convey.


Nature | 2002

Ecological responses to recent climate change.

Gian-Reto Walther; Eric Post; Peter Convey; Annette Menzel; Camille Parmesan; Trevor J. C. Beebee; Jean Marc Fromentin; Ove Hoegh-Guldberg; Franz Bairlein

There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.


Biological Reviews | 2005

Biological invasions in the Antarctic: extent, impacts and implications

Yves Frenot; Steven L. Chown; Jennie Whinam; P. M. Selkirk; Peter Convey; M. L. Skotnicki; Dana M. Bergstrom

Alien microbes, fungi, plants and animals occur on most of the sub‐Antarctic islands and some parts of the Antarctic continent. These have arrived over approximately the last two centuries, coincident with human activity in the region. Introduction routes have varied, but are largely associated with movement of people and cargo in connection with industrial, national scientific program and tourist operations. The large majority of aliens are European in origin. They have both direct and indirect impacts on the functioning of species‐poor Antarctic ecosystems, in particular including substantial loss of local biodiversity and changes to ecosystem processes. With rapid climate change occurring in some parts of Antarctica, elevated numbers of introductions and enhanced success of colonization by aliens are likely, with consequent increases in impacts on ecosystems. Mitigation measures that will substantially reduce the risk of introductions to Antarctica and the sub‐Antarctic must focus on reducing propagule loads on humans, and their food, cargo, and transport vessels.


Antarctic Science | 2009

Antarctic climate change and the environment

Peter Convey; Robert Bindschadler; G. di Prisco; Eberhard Fahrbach; Julian Gutt; Dominic A. Hodgson; Paul Andrew Mayewski; Colin Summerhayes; John Turner

Abstract The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (∼the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment.


Antarctic Science | 2009

Impacts of local human activities on the Antarctic environment.

Tina Tin; Zoe L. Fleming; Kevin A. Hughes; D.G. Ainley; Peter Convey; Carlos A. Moreno; S. Pfeiffer; Jj Scott; Ian Snape

Abstract We review the scientific literature, especially from the past decade, on the impacts of human activities on the Antarctic environment. A range of impacts has been identified at a variety of spatial and temporal scales. Chemical contamination and sewage disposal on the continent have been found to be long-lived. Contemporary sewage management practices at many coastal stations are insufficient to prevent local contamination but no introduction of non-indigenous organisms through this route has yet been demonstrated. Human activities, particularly construction and transport, have led to disturbances of flora and fauna. A small number of non-indigenous plant and animal species has become established, mostly on the northern Antarctic Peninsula and southern archipelagos of the Scotia Arc. There is little indication of recovery of overexploited fish stocks, and ramifications of fishing activity on bycatch species and the ecosystem could also be far-reaching. The Antarctic Treaty System and its instruments, in particular the Convention for the Conservation of Antarctic Marine Living Resources and the Environmental Protocol, provide a framework within which management of human activities take place. In the face of the continuing expansion of human activities in Antarctica, a more effective implementation of a wide range of measures is essential, in order to ensure comprehensive protection of the Antarctic environment, including its intrinsic, wilderness and scientific values which remains a fundamental principle of the Antarctic Treaty System. These measures include effective environmental impact assessments, long-term monitoring, mitigation measures for non-indigenous species, ecosystem-based management of living resources, and increased regulation of National Antarctic Programmes and tourism activities.


Biological Reviews | 2008

Antarctic terrestrial life – challenging the history of the frozen continent?

Peter Convey; John A. E. Gibson; Claus-Dieter Hillenbrand; Dominic A. Hodgson; P. J. A. Pugh; John L. Smellie; Mark I. Stevens

Antarctica is a continent locked in ice, with almost 99.7% of current terrain covered by permanent ice and snow, and clear evidence that, as recently as the Last Glacial Maximum (LGM), ice sheets were both thicker and much more extensive than they are now. Ice sheet modelling of both the LGM and estimated previous ice maxima across the continent give broad support to the concept that most if not all currently ice‐free ground would have been overridden during previous glaciations. This has given rise to a widely held perception that all Mesozoic (pre‐glacial) terrestrial life of Antarctica was wiped out by successive and deepening glacial events. The implicit conclusion of such destruction is that most, possibly all, contemporary terrestrial life has colonised the continent during subsequent periods of glacial retreat. However, several recently emerged and complementary strands of biological and geological research cannot be reconciled comfortably with the current reconstruction of Antarctic glacial history, and therefore provide a fundamental challenge to the existing paradigms. Here, we summarise and synthesise evidence across these lines of research. The emerging fundamental insights corroborate substantial elements of the contemporary Antarctic terrestrial biota being continuously isolated in situ on a multi‐million year, even pre‐Gondwana break‐up timescale. This new and complex terrestrial Antarctic biogeography parallels recent work suggesting greater regionalisation and evolutionary isolation than previously suspected in the circum‐Antarctic marine fauna. These findings both require the adoption of a new biological paradigm within Antarctica and challenge current understanding of Antarctic glacial history. This has major implications for our understanding of the key role of Antarctica in the Earth System.


Biological Reviews | 2005

Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability

Lloyd S. Peck; Peter Convey; David K. A. Barnes

Knowledge of Antarctic biotas and environments has increased dramatically in recent years. There has also been a rapid increase in the use of novel technologies. Despite this, some fundamental aspects of environmental control that structure physiological, ecological and life‐history traits in Antarctic organisms have received little attention. Possibly the most important of these is the timing and availability of resources, and the way in which this dictates the tempo or pace of life. The clearest view of this effect comes from comparisons of species living in different habitats. Here, we (i) show that the timing and extent of resource availability, from nutrients to colonisable space, differ across Antarctic marine, intertidal and terrestrial habitats, and (ii) illustrate that these differences affect the rate at which organisms function. Consequently, there are many dramatic biological differences between organisms that live as little as 10 m apart, but have gaping voids between them ecologically.


Polar Record | 2014

Antarctic climate change and the environment: an update

John Turner; Nicholas E. Barrand; Thomas J. Bracegirdle; Peter Convey; Dominic A. Hodgson; Martin J. Jarvis; Adrian Jenkins; Gareth J. Marshall; Michael P. Meredith; Howard K. Roscoe; J. D. Shanklin; John Anthony French; Hugues Goosse; Mauro Guglielmin; Julian Gutt; Stan Jacobs; M. C. Kennicutt; Valérie Masson-Delmotte; Paul Andrew Mayewski; Francisco Navarro; Sharon A. Robinson; Theodore A. Scambos; M. Sparrow; Colin Summerhayes; Kevin G. Speer; A. Klepikov

We present an update of the ‘key points’ from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the future, and examine the associated impacts on the marine and terrestrial biota. We also incorporate relevant material presented by SCAR to the Antarctic Treaty Consultative Meetings, and make use of emerging results that will form part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report


Applied and Environmental Microbiology | 2004

Molecular Analysis of Geographic Patterns of Eukaryotic Diversity in Antarctic Soils

Blair Lawley; Sarah Ripley; Paul Bridge; Peter Convey

ABSTRACT We describe the application of molecular biological techniques to estimate eukaryotic diversity (primarily fungi, algae, and protists) in Antarctic soils across a latitudinal and environmental gradient between approximately 60 and 87°S. The data were used to (i) test the hypothesis that diversity would decrease with increasing southerly latitude and environmental severity, as is generally claimed for “higher” faunal and plant groups, and (ii) investigate the level of endemicity displayed in different taxonomic groups. Only limited support was obtained for a systematic decrease in diversity with latitude, and then only at the level of a gross comparison between maritime (Antarctic Peninsula/Scotia Arc) and continental Antarctic sites. While the most southerly continental Antarctic site was three to four times less diverse than all maritime sites, there was no evidence for a trend of decreasing diversity across the entire range of the maritime Antarctic (60 to 72°S). Rather, we found the reverse pattern, with highest diversity at sites on Alexander Island (ca. 72°S), at the southern limit of the maritime Antarctic. The very limited overlap found between the eukaryotic biota of the different study sites, combined with their generally low relatedness to existing sequence databases, indicates a high level of Antarctic site isolation and possibly endemicity, a pattern not consistent with similar studies on other continents.


Philosophical Transactions of the Royal Society B | 2007

Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic

Steven L. Chown; Peter Convey

Antarctica and its surrounding islands lie at one extreme of global variation in diversity. Typically, these regions are characterized as being species poor and having simple food webs. Here, we show that terrestrial systems in the region are nonetheless characterized by substantial spatial and temporal variations at virtually all of the levels of the genealogical and ecological hierarchies which have been thoroughly investigated. Spatial variation at the individual and population levels has been documented in a variety of genetic studies, and in mosses it appears that UV-B radiation might be responsible for within-clump mutagenesis. At the species level, modern molecular methods have revealed considerable endemism of the Antarctic biota, questioning ideas that small organisms are likely to be ubiquitous and the taxa to which they belong species poor. At the biogeographic level, much of the relatively small ice-free area of Antarctica remains unsurveyed making analyses difficult. Nonetheless, it is clear that a major biogeographic discontinuity separates the Antarctic Peninsula and continental Antarctica, here named the ‘Gressitt Line’. Across the Southern Ocean islands, patterns are clearer, and energy availability is an important correlate of indigenous and exotic species richness, while human visitor numbers explain much of the variation in the latter too. Temporal variation at the individual level has much to do with phenotypic plasticity, and considerable life-history and physiological plasticity seems to be a characteristic of Antarctic terrestrial species. Environmental unpredictability is an important driver of this trait and has significantly influenced life histories across the region and probably throughout much of the temperate Southern Hemisphere. Rapid climate change-related alterations in the range and abundance of several Antarctic and sub-Antarctic populations have taken place over the past several decades. In many sub-Antarctic locations, these have been exacerbated by direct and indirect effects of invasive alien species. Interactions between climate change and invasion seem set to become one of the most significant conservation problems in the Antarctic. We conclude that despite the substantial body of work on the terrestrial biodiversity of the Antarctic, investigations of interactions between hierarchical levels remain scarce. Moreover, little of the available information is being integrated into terrestrial conservation planning, which lags far behind in this region by comparison with most others.


Ecological Monographs | 2014

The spatial structure of Antarctic biodiversity

Peter Convey; Steven L. Chown; Andrew Clarke; David K. A. Barnes; Stef Bokhorst; Vonda J. Cummings; Hugh W. Ducklow; Francesco Frati; T. G. Allan Green; Shulamit Gordon; Huw J. Griffiths; Clive Howard-Williams; Ad H L Huiskes; Johanna Laybourn-Parry; W. Berry Lyons; Andrew McMinn; Simon A. Morley; Lloyd S. Peck; Antonio Quesada; Sharon A. Robinson; Stefano Schiaparelli; Diana H. Wall

Patterns of environmental spatial structure lie at the heart of the most fundamental and familiar patterns of diversity on Earth. Antarctica contains some of the strongest environmental gradients on the planet and therefore provides an ideal study ground to test hypotheses on the relevance of environmental variability for biodiversity. To answer the pivotal question, “How does spatial variation in physical and biological environmental properties across the Antarctic drive biodiversity?” we have synthesized current knowledge on environmental variability across terrestrial, freshwater, and marine Antarctic biomes and related this to the observed biotic patterns. The most important physical driver of Antarctic terrestrial communities is the availability of liquid water, itself driven by solar irradiance intensity. Patterns of biota distribution are further strongly influenced by the historical development of any given location or region, and by geographical barriers. In freshwater ecosystems, free water is also crucial, with further important influences from salinity, nutrient availability, oxygenation, and characteristics of ice cover and extent. In the marine biome there does not appear to be one major driving force, with the exception of the oceanographic boundary of the Polar Front. At smaller spatial scales, ice cover, ice scour, and salinity gradients are clearly important determinants of diversity at habitat and community level. Stochastic and extreme events remain an important driving force in all environments, particularly in the context of local extinction and colonization or recolonization, as well as that of temporal environmental variability. Our synthesis demonstrates that the Antarctic continent and surrounding oceans provide an ideal study ground to develop new biogeographical models, including life history and physiological traits, and to address questions regarding biological responses to environmental variability and change.

Collaboration


Dive into the Peter Convey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. R. Worland

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

Ad H L Huiskes

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Kevin A. Hughes

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. S. Bale

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Julian Gutt

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge