Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D. Balsam is active.

Publication


Featured researches published by Peter D. Balsam.


Neuropsychopharmacology | 2006

Mice with Chronically Elevated Dopamine Exhibit Enhanced Motivation, but not Learning, for a Food Reward

Barbara Cagniard; Peter D. Balsam; Daniela Brunner; Xiaoxi Zhuang

Dopamine has been critically implicated in learning and motivation, although its precise role remains to be determined. In order to investigate the involvement of dopamine in learning and motivation for a food reward, we used dopamine transporter knockdown mice (DAT KD) that have chronically elevated levels of extracellular dopamine. The present study demonstrates that chronically elevated dopamine enhances tendency to work for a food reward without apparent effects on Pavlovian and operant learning for this reward. The increase in dopamine is associated with elevated levels of dynorphin and Fos B expression in the dorsal caudate-putamen and the core but not the shell subregion of the nucleus accumbens. These data suggest that motivation to work, but not learning, for a food reward appears to be under the critical influence of tonic dopaminergic activity in discrete brain areas relevant for a reward-directed behavior.


The Journal of Neuroscience | 2007

Transient Overexpression of Striatal D2 Receptors Impairs Operant Motivation and Interval Timing

Michael R. Drew; Eleanor H. Simpson; Christoph Kellendonk; William G. Herzberg; Olga Lipatova; Stephen Fairhurst; Eric R. Kandel; Chara Malapani; Peter D. Balsam

The striatum receives prominent dopaminergic innervation that is integral to appetitive learning, performance, and motivation. Signaling through the dopamine D2 receptor is critical for all of these processes. For instance, drugs with high affinity for the D2 receptor potently alter timing of operant responses and modulate motivation. Recently, in an attempt to model a genetic abnormality encountered in schizophrenia, mice were generated that reversibly overexpress D2 receptors specifically in the striatum (Kellendonk et al., 2006). These mice have impairments in working memory and behavioral flexibility, components of the cognitive symptoms of schizophrenia, that are not rescued when D2 overexpression is reversed in the adult. Here we report that overexpression of striatal D2 receptors also profoundly affects operant performance, a potential index of negative symptoms. Mice overexpressing D2 exhibited impairments in the ability to time food rewards in an operant interval timing task and reduced motivation to lever press for food reward in both the operant timing task and a progressive ratio schedule of reinforcement. The motivational deficit, but not the timing deficit, was rescued in adult mice by reversing D2 overexpression with doxycycline. These results suggest that early D2 overexpression alters the organization of interval timing circuits and confirms that striatal D2 signaling in the adult regulates motivational process. Moreover, overexpression of D2 under pathological conditions such as schizophrenia and Parkinsons disease could give rise to motivational and timing deficits.


Neuron | 2013

Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition

Sébastien Parnaudeau; Pia-Kelsey O’Neill; Scott S. Bolkan; Ryan D. Ward; Atheir I. Abbas; Bryan L. Roth; Peter D. Balsam; Joshua A. Gordon; Christoph Kellendonk

Cognitive deficits are central to schizophrenia, but the underlying mechanisms still remain unclear. Imaging studies performed in patients point to decreased activity in the mediodorsal thalamus (MD) and reduced functional connectivity between the MD and prefrontal cortex (PFC) as candidate mechanisms. However, a causal link is still missing. We used a pharmacogenetic approach in mice to diminish MD neuron activity and examined the behavioral and physiological consequences. We found that a subtle decrease in MD activity is sufficient to trigger selective impairments in prefrontal-dependent cognitive tasks. In vivo recordings in behaving animals revealed that MD-PFC beta-range synchrony is enhanced during acquisition and performance of a working memory task. Decreasing MD activity interfered with this task-dependent modulation of MD-PFC synchrony, which correlated with impaired working memory. These findings suggest that altered MD activity is sufficient to disrupt prefrontal-dependent cognitive behaviors and could contribute to the cognitive symptoms observed in schizophrenia.


Trends in Neurosciences | 2009

Temporal maps and informativeness in associative learning

Peter D. Balsam; C. Randy Gallistel

Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla-Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information.


Molecular Psychiatry | 2013

Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation

Pierre Trifilieff; Bo Feng; Eneko Urizar; Vanessa Winiger; Ryan D. Ward; Kathleen M. Taylor; Diana Martinez; Holly Moore; Peter D. Balsam; Eleanor H. Simpson; Jonathan A. Javitch

A decrease in dopamine D2 receptor (D2R) binding in the striatum is one of the most common findings in disorders that involve a dysregulation of motivation, including obesity, addiction and attention deficit hyperactivity disorder. As disruption of D2R signaling in the ventral striatum—including the nucleus accumbens (NAc)—impairs motivation, we sought to determine whether potentiating postsynaptic D2R-dependent signaling in the NAc would improve motivation. In this study, we used a viral vector strategy to overexpress postsynaptic D2Rs in either the NAc or the dorsal striatum. We investigated the effects of D2R overexpression on instrumental learning, willingness to work, use of reward value representations and modulation of motivation by reward associated cues. Overexpression of postsynaptic D2R in the NAc selectively increased motivation without altering consummatory behavior, the representation of the value of the reinforcer, or the capacity to use reward associated cues in flexible ways. In contrast, D2R overexpression in the dorsal striatum did not alter performance on any of the tasks. Thus, consistent with numerous studies showing that reduced D2R signaling impairs motivated behavior, our data show that postsynaptic D2R overexpression in the NAc specifically increases an animal’s willingness to expend effort to obtain a goal. Taken together, these results provide insight into the potential impact of future therapeutic strategies that enhance D2R signaling in the NAc.


Pharmacology, Biochemistry and Behavior | 2003

Effects of dopamine antagonists on the timing of two intervals.

Michael R. Drew; Stephen Fairhurst; Chara Malapani; Jon C. Horvitz; Peter D. Balsam

Rats were trained on a two-interval (12 and 36 s) temporal production task (the peak procedure). Test sessions were conducted in which either the D(1) antagonist SCH-23390 (SCH; 0.02, 0.04, 0.06 mg/kg) or the D(2) antagonist haloperidol (HAL; 0.05, 0.1, 0.2 mg/kg) were injected prior to testing. Both drugs affected the amount of responding, but only HAL affected timing. Under HAL, both intervals were overestimated, consistent with a HAL-induced decrease in clock speed. Drug-induced decreases in response output were more profound for the long interval than the short. In addition, there was evidence of HAL- and SCH-induced delays in response initiation that were more severe for the long interval, perhaps owing to its status as a weaker conditioned stimulus.


The Journal of Neuroscience | 2005

Extended Habit Training Reduces Dopamine Mediation of Appetitive Response Expression

Won Yung Choi; Peter D. Balsam; Jon C. Horvitz

A wide range of behaviors is impaired after disruption of dopamine (DA) transmission, yet behaviors that are reflexive, automatic, or elicited by salient cues often remain intact. Responses triggered by strong external cues appear to be DA independent. Here, we examined the possibility that a single behavior may become DA independent as a result of extended training. Rats were trained to execute a head-entry response to a cue signaling food delivery. Vulnerability of the response to D1 or D2 receptor blockade was assessed on day 3, 7, or 17 of 28-trial-per-day training. During the early stages of training, the D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390) increased response latencies; however, the same behavior was unaffected by SCH 23390 in animals tested during the later stages of training. Other aspects of behavior such as locomotion and head-entry responses during the uncued intertrial interval remained vulnerable to SCH 23390 throughout the experiment. This D1-mediated response was unaffected by the D2 antagonist raclopride, even at a dose that strongly suppressed locomotion. The results provide strong evidence that a D1-dependent behavior becomes less dependent on DA with extended training. A number of fundamental neurobiological changes occur as behaviors become learned habits; at least for some responses, this change involves a shift from D1-mediated to D1-independent responding.


Neuropsychopharmacology | 2012

Dissociation of Hedonic Reaction to Reward and Incentive Motivation in an Animal Model of the Negative Symptoms of Schizophrenia

Ryan D. Ward; Eleanor H. Simpson; Vanessa L. Richards; Gita Deo; Kathleen M. Taylor; John I Glendinning; Eric R. Kandel; Peter D. Balsam

We previously showed that mice that selectively and reversibly overexpress striatal D2 receptors (D2R-OE) model the negative symptoms of schizophrenia. Specifically, D2R-OE mice display a deficit in incentive motivation. The present studies investigated the basis for this deficit. First, we assessed whether hedonic reaction to reward is intact in D2R-OE mice. We assessed licking behavior and video-scored positive hedonic facial reactions to increasing concentrations of sucrose in control and D2R-OE mice. We found no difference between D2R-OE mice and controls in hedonic reactions. To further understand the basis of the motivational deficit, mice were given a choice between pressing a lever for access to a preferred reward (evaporated milk) or consuming a freely available less preferred reward (home-cage chow). D2R-OE mice pressed less for the preferred milk and consumed more of the freely available less preferred chow, indicating that striatal overexpression of postsynaptic D2Rs can alter cost/benefit computations, leading to a motivational deficit. This motivational impairment was ameliorated when the transgene was turned off and D2R levels were normalized. Such a deficit may arise from impaired ability to represent the value of future rewards. To test this, we used operant concurrent schedules and found reduced sensitivity to the value of future outcomes in D2R-OE mice. These results demonstrate for the first time in a transgenic animal model of schizophrenia a dissociation between hedonic reaction to reward and incentive motivation, and show a striking parallel to the proposed neurobiological and psychological mechanisms of impaired incentive motivation in schizophrenia.


Biological Psychiatry | 2011

Pharmacologic Rescue of Motivational Deficit in an Animal Model of the Negative Symptoms of Schizophrenia

Eleanor H. Simpson; Christoph Kellendonk; Ryan D. Ward; Vanessa L. Richards; Olga Lipatova; Stephen Fairhurst; Eric R. Kandel; Peter D. Balsam

BACKGROUND Deficits in incentive motivation, the energizing of behavior in pursuit of a goal, occur in many psychiatric disorders including schizophrenia. We previously reported deficits in both cognition and incentive motivation in a transgenic mouse model of increased striatal-specific dopamine D2 receptor (D2R) density (D2R-OE mice). This molecular alteration is observed in patients with schizophrenia, making D2R-OE mice a suitable system to study the cellular and molecular mechanisms of motivation and avolition, as well as a tool for testing potential therapies against motivational deficits. METHODS Behavioral studies using operant conditioning methods were performed both to further characterize the incentive motivation deficit in D2R-OE mice and test a novel pharmacological treatment target that arose from an unbiased expression study performed using gene chips and was validated by quantitative reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. RESULTS The reluctance of D2R-OE mice to work is due neither to intolerance for low rates of reward, decreased reactivity to reward, nor increased sensitivity to satiety or fatigue but to a difference in willingness to work for reward. As in patients with schizophrenia, this deficit was not ameliorated by D2R blockade, suggesting that reversal of the motivational deficit by switching off the transgene results from molecular changes downstream of D2R overexpression. We observed a reversible increase in serotonin subtype 2C (5-HT2C) receptor expression in D2R-OE mice. Systemic injection of a 5-HT2C receptor antagonist increased incentive motivation in D2R-OE and control mice. CONCLUSIONS We propose that targeting 5-HT2C receptors may be a useful approach to modulate incentive motivation in psychiatric illness.


Biological Psychiatry | 2015

Mediodorsal Thalamus Hypofunction Impairs Flexible Goal-Directed Behavior

Sébastien Parnaudeau; Kathleen M. Taylor; Scott S. Bolkan; Ryan D. Ward; Peter D. Balsam; Christoph Kellendonk

BACKGROUND Cognitive inflexibility is a core symptom of several mental disorders including schizophrenia. Brain imaging studies in schizophrenia patients performing cognitive tasks have reported decreased activation of the mediodorsal thalamus (MD). Using a pharmacogenetic approach to model MD hypofunction, we recently showed that decreasing MD activity impairs reversal learning in mice. While this demonstrates causality between MD hypofunction and cognitive inflexibility, questions remain about the elementary cognitive processes that account for the deficit. METHODS Using the Designer Receptors Exclusively Activated by Designer Drugs system, we reversibly decreased MD activity during behavioral tasks assessing elementary cognitive processes inherent to flexible goal-directed behaviors, including extinction, contingency degradation, outcome devaluation, and Pavlovian-to-instrumental transfer (n = 134 mice). RESULTS While MD hypofunction impaired reversal learning, it did not affect the ability to learn about nonrewarded cues or the ability to modulate action selection based on the outcome value. In contrast, decreasing MD activity delayed the ability to adapt to changes in the contingency between actions and their outcomes. In addition, while Pavlovian learning was not affected by MD hypofunction, decreasing MD activity during Pavlovian learning impaired the ability of conditioned stimuli to modulate instrumental behavior. CONCLUSIONS Mediodorsal thalamus hypofunction causes cognitive inflexibility reflected by an impaired ability to adapt actions when their consequences change. Furthermore, it alters the encoding of environmental stimuli so that they cannot be properly utilized to guide behavior. Modulating MD activity could be a potential therapeutic strategy for promoting adaptive behavior in human subjects with cognitive inflexibility.

Collaboration


Dive into the Peter D. Balsam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Drew

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge