Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D. Gould is active.

Publication


Featured researches published by Peter D. Gould.


Molecular Systems Biology | 2006

Experimental validation of a predicted feedback loop in the multi‐oscillator clock of Arabidopsis thaliana

James C. Locke; László Kozma-Bognár; Peter D. Gould; Balázs Fehér; Éva Kevei; Ferenc Nagy; Matthew S. Turner; Anthony Hall; Andrew J. Millar

Our computational model of the circadian clock comprised the feedback loop between LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING OF CAB EXPRESSION 1 (TOC1), and a predicted, interlocking feedback loop involving TOC1 and a hypothetical component Y. Experiments based on model predictions suggested GIGANTEA (GI) as a candidate for Y. We now extend the model to include a recently demonstrated feedback loop between the TOC1 homologues PSEUDO‐RESPONSE REGULATOR 7 (PRR7), PRR9 and LHY and CCA1. This three‐loop network explains the rhythmic phenotype of toc1 mutant alleles. Model predictions fit closely to new data on the gi;lhy;cca1 mutant, which confirm that GI is a major contributor to Y function. Analysis of the three‐loop network suggests that the plant clock consists of morning and evening oscillators, coupled intracellularly, which may be analogous to coupled, morning and evening clock cells in Drosophila and the mouse.


The Plant Cell | 2006

The Molecular Basis of Temperature Compensation in the Arabidopsis Circadian Clock

Peter D. Gould; James C. Locke; Camille Larue; Megan M. Southern; Seth J. Davis; Shigeru Hanano; Richard Moyle; Raechel Milich; Joanna Putterill; Andrew J. Millar; Anthony Hall

Circadian clocks maintain robust and accurate timing over a broad range of physiological temperatures, a characteristic termed temperature compensation. In Arabidopsis thaliana, ambient temperature affects the rhythmic accumulation of transcripts encoding the clock components TIMING OF CAB EXPRESSION1 (TOC1), GIGANTEA (GI), and the partially redundant genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). The amplitude and peak levels increase for TOC1 and GI RNA rhythms as the temperature increases (from 17 to 27°C), whereas they decrease for LHY. However, as temperatures decrease (from 17 to 12°C), CCA1 and LHY RNA rhythms increase in amplitude and peak expression level. At 27°C, a dynamic balance between GI and LHY allows temperature compensation in wild-type plants, but circadian function is impaired in lhy and gi mutant plants. However, at 12°C, CCA1 has more effect on the buffering mechanism than LHY, as the cca1 and gi mutations impair circadian rhythms more than lhy at the lower temperature. At 17°C, GI is apparently dispensable for free-running circadian rhythms, although partial GI function can affect circadian period. Numerical simulations using the interlocking-loop model show that balancing LHY/CCA1 function against GI and other evening-expressed genes can largely account for temperature compensation in wild-type plants and the temperature-specific phenotypes of gi mutants.


Plant Journal | 2009

Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants

Peter D. Gould; Patrick Diaz; Claire Hogben; Jelena Kusakina; Radia Salem; James Hartwell; Anthony Hall

The plant circadian clock plays an important role in enhancing performance and increasing vegetative yield. Much of our current understanding of the mechanism and function of the plant clock has come from the development of Arabidopsis thaliana as a model circadian organism. Key to this rapid progress has been the development of robust circadian markers, specifically circadian-regulated luciferase reporter genes. Studies of the clock in crop species and non-model organisms are currently hindered by the absence of a simple high-throughput universal assay for clock function, accuracy and robustness. Delayed fluorescence (DF) is a fundamental process occurring in all photosynthetic organisms. It is luminescence-produced post-illumination due to charge recombination in photosystem II (PSII) leading to excitation of P680 and the subsequent emission of a photon. Here we report that the amount of DF oscillates with an approximately 24-h period and is under the control of the circadian clock in a diverse selection of plants. Thus, DF provides a simple clock output that may allow the clock to be assayed in vivo in any photosynthetic organism. Furthermore, our data provide direct evidence that the nucleus-encoded, three-loop circadian oscillator underlies rhythms of PSII activity in the chloroplast. This simple, high-throughput and non-transgenic assay could be integrated into crop breeding programmes, the assay allows the selection of plants that have robust and accurate clocks, and possibly enhanced performance and vegetative yield. This assay could also be used to characterize rapidly the role and function of any novel Arabidopsis circadian mutant.


Molecular Systems Biology | 2014

Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures

Peter D. Gould; Nicolas Ugarte; Mirela Domijan; Maria J. Costa; Julia Foreman; Dana R. MacGregor; Ken Rose; Jayne Griffiths; Andrew J. Millar; Bärbel Finkenstädt; Steven Penfield; David A. Rand; Karen J. Halliday; Anthony Hall

Circadian clocks exhibit ‘temperature compensation’, meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature‐dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock. Our data demonstrate that two cryptochrome photoreceptors differentially control circadian period and sustain rhythmicity across the physiological temperature range. In order to test the hypothesis that the targets of light regulation are sufficient to mediate temperature compensation, we constructed a temperature‐compensated clock model by adding passive temperature effects into only the light‐sensitive processes in the model. Remarkably, this model was not only capable of full temperature compensation and consistent with mRNA profiles across a temperature range, but also predicted the temperature‐dependent change in the level of LATE ELONGATED HYPOCOTYL, a key clock protein. Our analysis provides a systems‐level understanding of period control in the plant circadian oscillator.


Genome Biology | 2011

Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis

Kevin E. Ashelford; Maria Eriksson; Christopher M. Allen; Rosalinda D'Amore; Mikael Johansson; Peter D. Gould; Suzanne Kay; Andrew J. Millar; Neil Hall; Anthony Hall

Map based cloning in Arabidopsis thaliana can be a difficult and time-consuming process, specifically if the phenotype is subtle and scoring labour intensive. Here, we have re-sequenced the 120-Mb genome of a novel Arabidopsis clock mutant early bird (ebi-1) in Wassilewskija (Ws-2). We demonstrate the utility of sequencing a backcrossed line in limiting the number of SNPs considered. We identify a SNP in the gene AtNFXL-2 as the likely cause of the ebi-1 phenotype.


Genetics | 2014

A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat.

Piotr Gawroński; Ruvini Ariyadasa; Axel Himmelbach; Naser Poursarebani; Benjamin Kilian; Nils Stein; Burkhard Steuernagel; Goetz Hensel; Jochen Kumlehn; Sunish K. Sehgal; Bikram S. Gill; Peter D. Gould; Anthony Hall; Thorsten Schnurbusch

Viable circadian clocks help organisms to synchronize their development with daily and seasonal changes, thereby providing both evolutionary fitness and advantage from an agricultural perspective. A high-resolution mapping approach combined with mutant analysis revealed a cereal ortholog of Arabidopsis thaliana LUX ARRHYTHMO/PHYTOCLOCK 1 (LUX/PCL1) as a promising candidate for the earliness per se 3 (Eps-3Am) locus in einkorn wheat (Triticum monococcum L.). Using delayed fluorescence measurements it was shown that Eps-3Am containing einkorn wheat accession KT3-5 had a distorted circadian clock. The hypothesis was subsequently confirmed by performing a time course study on central and output circadian clock genes, which showed arrhythmic transcript patterns in KT3-5 under constant ambient conditions, i.e., constant light and temperature. It was also demonstrated that variation in spikelet number between wild-type and mutants is sensitive to temperature, becoming negligible at 25°. These observations lead us to propose that the distorted clock is causative for both early flowering and variation in spike size and spikelet number, and that having a dysfunctional LUX could have neutral, or even positive, effects in warmer climates. To test the latter hypothesis we ascertained sequence variation of LUX in a range of wheat germplasm. We observed a higher variation in the LUX sequence among accessions coming from the warmer climate and a unique in-frame mutation in early-flowering Chinese T. turgidum cultivar ‘Tsing Hua no. 559.’ Our results emphasize the importance of the circadian clock in temperate cereals as a promising target for adaptation to new environments.


Nature Communications | 2015

The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana

Ute Voß; Michael Wilson; Kim Kenobi; Peter D. Gould; Fiona C. Robertson; Wendy Ann Peer; Mikaël Lucas; Kamal Swarup; Ilda Casimiro; Tara J. Holman; Darren M. Wells; Benjamin Péret; Tatsuaki Goh; Hidehiro Fukaki; T. Charlie Hodgman; Laurent Laplaze; Karen J. Halliday; Karin Ljung; Angus S. Murphy; Anthony Hall; Alex A. R. Webb; Malcolm J. Bennett

The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence.


Photosynthesis Research | 2014

The circadian regulation of photosynthesis

Antony N. Dodd; Jelena Kusakina; Anthony Hall; Peter D. Gould; Mitsumasa Hanaoka

Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control of photosynthesis. We discuss candidate mechanisms underpinning circadian oscillations of light harvesting and consider how the circadian clock modulates CO2 fixation by Rubisco. We show that new techniques may provide a platform to better understand the signalling pathways that couple the circadian clock with the photosynthetic apparatus. Finally, we discuss how understanding circadian regulation in model systems is underpinning research into the impact of circadian regulation in crop species.


The Plant Cell | 2013

HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis

Dana R. MacGregor; Peter D. Gould; Julia Foreman; Jayne Griffiths; Susannah Bird; Rhiannon Page; Kelly Stewart; Gavin Steel; Jack Young; Konrad Paszkiewicz; Andrew J. Millar; Karen J. Halliday; Anthony Hall; Steven Penfield

This work shows that HOS1, previously characterized as a nuclear pore–associated E3 ubiquitin ligase, is required for nucleo-cytoplasmic mRNA export. This study demonstrates that this reduction in nucleo-cytoplasmic export by hos1, or mutations to other previously characterized nuclear pore–associated proteins, leads to altered RNA levels and rhythms, circadian clock function, and cold signaling. Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments. We demonstrate that hos1 mutants accumulate polyadenylated mRNA in the nucleus and that the circadian defect in hos1 is shared by multiple mutants with aberrant mRNA export, but not in a mutant attenuated in nucleo-cytoplasmic transport of microRNAs. As revealed by RNA sequencing, hos1 exhibits gross changes to the transcriptome with genes in multiple functional categories being affected. In addition, we show that hos1 and other previously described mutants with altered mRNA export affect cold signaling in a similar manner. Our data support a model in which altered mRNA export is important for the manifestation of hos1 circadian clock defects and suggest that HOS1 may indirectly affect cold signaling through disruption of the circadian clock.


Biostatistics | 2013

Inference on periodicity of circadian time series

Maria J. Costa; Bärbel Finkenstädt; Véronique Roche; Francis Lévi; Peter D. Gould; Julia Foreman; Karen J. Halliday; Anthony Hall; David A. Rand

Estimation of the period length of time-course data from cyclical biological processes, such as those driven by the circadian pacemaker, is crucial for inferring the properties of the biological clock found in many living organisms. We propose a methodology for period estimation based on spectrum resampling (SR) techniques. Simulation studies show that SR is superior and more robust to non-sinusoidal and noisy cycles than a currently used routine based on Fourier approximations. In addition, a simple fit to the oscillations using linear least squares is available, together with a non-parametric test for detecting changes in period length which allows for period estimates with different variances, as frequently encountered in practice. The proposed methods are motivated by and applied to various data examples from chronobiology.

Collaboration


Dive into the Peter D. Gould's collaboration.

Top Co-Authors

Avatar

Anthony Hall

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge