Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D. Karp is active.

Publication


Featured researches published by Peter D. Karp.


Molecular Systems Biology | 2007

A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information.

Adam M. Feist; Christopher S. Henry; Jennifer L. Reed; Markus Krummenacker; Andrew R. Joyce; Peter D. Karp; Linda J. Broadbelt; Vassily Hatzimanikatis; Bernhard O. Palsson

An updated genome‐scale reconstruction of the metabolic network in Escherichia coli K‐12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome‐scale metabolic model to predict high‐throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.


Nucleic Acids Research | 2004

EcoCyc: a comprehensive database resource for Escherichia coli

Ingrid M. Keseler; Julio Collado-Vides; Socorro Gama-Castro; John L. Ingraham; Suzanne M. Paley; Ian T. Paulsen; Martín Peralta-Gil; Peter D. Karp

The EcoCyc database (http://EcoCyc.org/) is a comprehensive source of information on the biology of the prototypical model organism Escherichia coli K12. The mission for EcoCyc is to contain both computable descriptions of, and detailed comments describing, all genes, proteins, pathways and molecular interactions in E.coli. Through ongoing manual curation, extensive information such as summary comments, regulatory information, literature citations and evidence types has been extracted from 8862 publications and added to Version 8.5 of the EcoCyc database. The EcoCyc database can be accessed through a World Wide Web interface, while the downloadable Pathway Tools software and data files enable computational exploration of the data and provide enhanced querying capabilities that web interfaces cannot support. For example, EcoCyc contains carefully curated information that can be used as training sets for bioinformatics prediction of entities such as promoters, operons, genetic networks, transcription factor binding sites, metabolic pathways, functionally related genes, protein complexes and protein–ligand interactions.


Nucleic Acids Research | 2004

MetaCyc: a multiorganism database of metabolic pathways and enzymes.

Cynthia J. Krieger; Peifen Zhang; Lukas A. Mueller; Alfred Wang; Suzanne M. Paley; Martha Arnaud; John Pick; Seung Y. Rhee; Peter D. Karp

The MetaCyc database (see URL http://MetaCyc.org) is a collection of metabolic pathways and enzymes from a wide variety of organisms, primarily microorganisms and plants. The goal of MetaCyc is to contain a representative sample of each experimentally elucidated pathway, and thereby to catalog the universe of metabolism. MetaCyc also describes reactions, chemical compounds and genes. Many of the pathways and enzymes in MetaCyc contain extensive information, including comments and literature citations. SRIs Pathway Tools software supports querying, visualization and curation of MetaCyc. With its wide breadth and depth of metabolic information, MetaCyc is a valuable resource for a variety of applications. MetaCyc is the reference database of pathways and enzymes that is used in conjunction with SRIs metabolic pathway prediction program to create Pathway/Genome Databases that can be augmented with curation from the scientific literature and published on the world wide web. MetaCyc also serves as a readily accessible comprehensive resource on microbial and plant pathways for genome analysis, basic research, education, metabolic engineering and systems biology. In the past 2 years the data content and the Pathway Tools software used to query, visualize and edit MetaCyc have been expanded significantly. These enhancements are described in this paper.


Nucleic Acids Research | 2005

Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

Peter D. Karp; Christos A. Ouzounis; Caroline Moore-Kochlacs; Leon Goldovsky; Pallavi Kaipa; Dag Ahrén; Sophia Tsoka; Nikos Darzentas; Victor Kunin; Nuria Lopez-Bigas

The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing.


Nucleic Acids Research | 2002

The EcoCyc Database

Peter D. Karp; Monica Riley; Milton H. Saier; Ian T. Paulsen; Julio Collado-Vides; Suzanne M. Paley; Alida Pellegrini-Toole; César Bonavides; Socorro Gama-Castro

EcoCyc is an organism-specific pathway/genome database that describes the metabolic and signal-transduction pathways of Escherichia coli, its enzymes, its transport proteins and its mechanisms of transcriptional control of gene expression. EcoCyc is queried using the Pathway Tools graphical user interface, which provides a wide variety of query operations and visualization tools. EcoCyc is available at http://ecocyc.org/.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Nucleic Acids Research | 2013

EcoCyc: fusing model organism databases with systems biology

Ingrid M. Keseler; Amanda Mackie; Martín Peralta-Gil; Alberto Santos-Zavaleta; Socorro Gama-Castro; César Bonavides-Martínez; Carol A. Fulcher; Araceli M. Huerta; Anamika Kothari; Markus Krummenacker; Mario Latendresse; Luis Muñiz-Rascado; Quang Ong; Suzanne M. Paley; Imke Schröder; Alexander Glennon Shearer; Pallavi Subhraveti; Michael Travers; Deepika Weerasinghe; Verena Weiss; Julio Collado-Vides; Robert P. Gunsalus; Ian T. Paulsen; Peter D. Karp

EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.


Briefings in Bioinformatics | 2010

Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology

Peter D. Karp; Suzanne M. Paley; Markus Krummenacker; Mario Latendresse; Joseph M. Dale; Thomas J. Lee; Pallavi Kaipa; Fred Gilham; Aaron Spaulding; Liviu Popescu; Tomer Altman; Ian T. Paulsen; Ingrid M. Keseler; Ron Caspi

Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry.


Nature Genetics | 2005

The complete genome sequence of Francisella tularensis, the causative agent of tularemia.

Pär Larsson; Petra C. F. Oyston; Patrick Chain; May C. Chu; Melanie Duffield; Hans-Henrik Fuxelius; Emilio Garcia; Greger Hälltorp; Daniel Johansson; Karen E. Isherwood; Peter D. Karp; Eva Larsson; Ying Liu; Stephen L. Michell; Joann L. Prior; Richard G. Prior; Stephanie Malfatti; Anders Sjöstedt; Kerstin Svensson; Nick Thompson; Lisa M. Vergez; Jonathan Wagg; Brendan W. Wren; Luther E. Lindler; Siv G. E. Andersson; Mats Forsman; Richard W. Titball

Francisella tularensis is one of the most infectious human pathogens known. In the past, both the former Soviet Union and the US had programs to develop weapons containing the bacterium. We report the complete genome sequence of a highly virulent isolate of F. tularensis (1,892,819 bp). The sequence uncovers previously uncharacterized genes encoding type IV pili, a surface polysaccharide and iron-acquisition systems. Several virulence-associated genes were located in a putative pathogenicity island, which was duplicated in the genome. More than 10% of the putative coding sequences contained insertion-deletion or substitution mutations and seemed to be deteriorating. The genome is rich in IS elements, including IS630 Tc-1 mariner family transposons, which are not expected in a prokaryote. We used a computational method for predicting metabolic pathways and found an unexpectedly high proportion of disrupted pathways, explaining the fastidious nutritional requirements of the bacterium. The loss of biosynthetic pathways indicates that F. tularensis is an obligate host-dependent bacterium in its natural life cycle. Our results have implications for our understanding of how highly virulent human pathogens evolve and will expedite strategies to combat them.


Nucleic Acids Research | 2011

EcoCyc: a comprehensive database of Escherichia coli biology

Ingrid M. Keseler; Julio Collado-Vides; Alberto Santos-Zavaleta; Martín Peralta-Gil; Socorro Gama-Castro; Luis Muñiz-Rascado; César Bonavides-Martínez; Suzanne M. Paley; Markus Krummenacker; Tomer Altman; Pallavi Kaipa; Aaron Spaulding; John Pacheco; Mario Latendresse; Carol A. Fulcher; Malabika Sarker; Alexander Glennon Shearer; Amanda Mackie; Ian T. Paulsen; Robert P. Gunsalus; Peter D. Karp

EcoCyc (http://EcoCyc.org) is a comprehensive model organism database for Escherichia coli K-12 MG1655. From the scientific literature, EcoCyc captures the functions of individual E. coli gene products; their regulation at the transcriptional, post-transcriptional and protein level; and their organization into operons, complexes and pathways. EcoCyc users can search and browse the information in multiple ways. Recent improvements to the EcoCyc Web interface include combined gene/protein pages and a Regulation Summary Diagram displaying a graphical overview of all known regulatory inputs to gene expression and protein activity. The graphical representation of signal transduction pathways has been updated, and the cellular and regulatory overviews were enhanced with new functionality. A specialized undergraduate teaching resource using EcoCyc is being developed.

Collaboration


Dive into the Peter D. Karp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid M. Keseler

Artificial Intelligence Center

View shared research outputs
Top Co-Authors

Avatar

Ron Caspi

Artificial Intelligence Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio Collado-Vides

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Socorro Gama-Castro

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Riley

Marine Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge