Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D. Keightley is active.

Publication


Featured researches published by Peter D. Keightley.


Nature Reviews Genetics | 2007

The distribution of fitness effects of new mutations

Adam Eyre-Walker; Peter D. Keightley

The distribution of fitness effects (DFE) of new mutations is a fundamental entity in genetics that has implications ranging from the genetic basis of complex disease to the stability of the molecular clock. It has been studied by two different approaches: mutation accumulation and mutagenesis experiments, and the analysis of DNA sequence data. The proportion of mutations that are advantageous, effectively neutral and deleterious varies between species, and the DFE differs between coding and non-coding DNA. Despite these differences between species and genomic regions, some general principles have emerged: advantageous mutations are rare, and those that are strongly selected are exponentially distributed; and the DFE of deleterious mutations is complex and multi-modal.


Nature Reviews Genetics | 2002

Understanding quantitative genetic variation.

Nicholas H. Barton; Peter D. Keightley

Until recently, it was impracticable to identify the genes that are responsible for variation in continuous traits, or to directly observe the effects of their different alleles. Now, the abundance of genetic markers has made it possible to identify quantitative trait loci (QTL) — the regions of a chromosome or, ideally, individual sequence variants that are responsible for trait variation. What kind of QTL do we expect to find and what can our observations of QTL tell us about how organisms evolve? The key to understanding the evolutionary significance of QTL is to understand the nature of inherited variation, not in the immediate mechanistic sense of how genes influence phenotype, but, rather, to know what evolutionary forces maintain genetic variability.


Nature | 2002

Understanding quantitative genetic variation

Nicholas H. Barton; Peter D. Keightley

Until recently, it was impracticable to identify the genes that are responsible for variation in continuous traits, or to directly observe the effects of their different alleles. Now, the abundance of genetic markers has made it possible to identify quantitative trait loci (QTL) — the regions of a chromosome or, ideally, individual sequence variants that are responsible for trait variation. What kind of QTL do we expect to find and what can our observations of QTL tell us about how organisms evolve? The key to understanding the evolutionary significance of QTL is to understand the nature of inherited variation, not in the immediate mechanistic sense of how genes influence phenotype, but, rather, to know what evolutionary forces maintain genetic variability.


Nature | 1999

High genomic deleterious mutation rates in hominids

Adam Eyre-Walker; Peter D. Keightley

It has been suggested that humans may suffer a high genomic deleterious mutation rate,. Here we test this hypothesis by applying a variant of a molecular approach to estimate the deleterious mutation rate in hominids from the level of selective constraint in DNA sequences. Under conservative assumptions, we estimate that an average of 4.2 amino-acid-altering mutations per diploid per generation have occurred in the human lineage since humans separated from chimpanzees. Of these mutations, we estimate that at least 38% have been eliminated by natural selection, indicating that there have been more than 1.6 new deleterious mutations per diploid genome per generation. Thus, the deleterious mutation rate specific to protein-coding sequences alone is close to the upper limit tolerable by a species such as humans that has a low reproductive rate, indicating that the effects of deleterious mutations may have combined synergistically. Furthermore, the level of selective constraint in hominid protein-coding sequences is atypically low. A large number of slightly deleterious mutations may therefore have become fixed in hominid lineages.


Nature | 2007

Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila.

Cathy Haag-Liautard; Mark Dorris; Xulio Maside; Steven Macaskill; Daniel L. Halligan; David Houle; Brian Charlesworth; Peter D. Keightley

Spontaneous mutations are the source of genetic variation required for evolutionary change, and are therefore important for many aspects of evolutionary biology. For example, the divergence between taxa at neutrally evolving sites in the genome is proportional to the per nucleotide mutation rate, u (ref. 1), and this can be used to date speciation events by assuming a molecular clock. The overall rate of occurrence of deleterious mutations in the genome each generation (U) appears in theories of nucleotide divergence and polymorphism, the evolution of sex and recombination, and the evolutionary consequences of inbreeding. However, estimates of U based on changes in allozymes or DNA sequences and fitness traits are discordant. Here we directly estimate u in Drosophila melanogaster by scanning 20 million bases of DNA from three sets of mutation accumulation lines by using denaturing high-performance liquid chromatography. From 37 mutation events that we detected, we obtained a mean estimate for u of 8.4 × 10-9 per generation. Moreover, we detected significant heterogeneity in u among the three mutation-accumulation-line genotypes. By multiplying u by an estimate of the fraction of mutations that are deleterious in natural populations of Drosophila, we estimate that U is 1.2 per diploid genome. This high rate suggests that selection against deleterious mutations may have a key role in explaining patterns of genetic variation in the genome, and help to maintain recombination and sexual reproduction.


Nature | 2006

Interference among deleterious mutations favours sex and recombination in finite populations

Peter D. Keightley; Sarah P. Otto

Sex and recombination are widespread, but explaining these phenomena has been one of the most difficult problems in evolutionary biology. Recombination is advantageous when different individuals in a population carry different advantageous alleles. By bringing together advantageous alleles onto the same chromosome, recombination speeds up the process of adaptation and opposes the fixation of harmful mutations by means of Mullers ratchet. Nevertheless, adaptive substitutions favour sex and recombination only if the rate of adaptive mutation is high, and Mullers ratchet operates only in small or asexual populations. Here, by tracking the fate of modifier alleles that alter the frequency of sex and recombination, we show that background selection against deleterious mutant alleles provides a stochastic advantage to sex and recombination that increases with population size. The advantage arises because, with low levels of recombination, selection at other loci severely reduces the effective population size and genetic variance in fitness at a focal locus (the Hill–Robertson effect), making a population less able to respond to selection and to rid itself of deleterious mutations. Sex and recombination reveal the hidden genetic variance in fitness by combining chromosomes of intermediate fitness to create chromosomes that are relatively free of (or are loaded with) deleterious mutations. This increase in genetic variance within finite populations improves the response to selection and generates a substantial advantage to sex and recombination that is fairly insensitive to the form of epistatic interactions between deleterious alleles. The mechanism supported by our results offers a robust and broadly applicable explanation for the evolutionary advantage of recombination and can explain the spread of costly sex.


Molecular Biology and Evolution | 2009

Estimating the Rate of Adaptive Molecular Evolution in the Presence of Slightly Deleterious Mutations and Population Size Change

Adam Eyre-Walker; Peter D. Keightley

The prevalence of adaptive evolution relative to genetic drift is a central problem in molecular evolution. Methods to estimate the fraction of adaptive nucleotide substitutions (alpha) have been developed, based on the McDonald-Kreitman test, that contrast polymorphism and divergence between selectively and neutrally evolving sites. However, these methods are expected to give downwardly biased estimates of alpha if there are slightly deleterious mutations, because these inflate polymorphism relative to divergence. Here, we estimate alpha by simultaneously estimating the distribution of fitness effects of new mutations at selected sites from the site frequency spectrum and the number of adaptive substitutions. We test the method using simulations. If data meet the assumptions of the analysis model, estimates of alpha show little bias, even when there is little or no recombination. However, population size differences between the divergence and polymorphism phases may cause alpha to be over or underestimated by a predictable factor that depends on the magnitude of the population size change and the shape of the distribution of effects of deleterious mutations. We analyze several data sets of protein-coding genes and noncoding regions from hominids and Drosophila. In Drosophila genes, we estimate that approximately 50% of amino acid substitutions and approximately 20% of substitutions in introns are adaptive. In protein-coding and noncoding data sets of humans, comparison to macaque sequences reveals little evidence for adaptive substitutions. However, the true frequency of adaptive substitutions in human-coding DNA could be as high as 40%, because estimates based on current polymorphism may be strongly downwardly biased by a decrease in the effective population size along the human lineage.


Genome Research | 2009

Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines.

Peter D. Keightley; Urmi Trivedi; Marian Thomson; Fiona Oliver; Sujai Kumar; Mark Blaxter

We inferred the rate and properties of new spontaneous mutations in Drosophila melanogaster by carrying out whole-genome shotgun sequencing-by-synthesis of three mutation accumulation (MA) lines that had been maintained by close inbreeding for an average of 262 generations. We tested for the presence of new mutations by generating alignments of each MA line to the D. melanogaster reference genome sequence and then compared these alignments base by base. We determined empirically that at least five reads at a site within each line are required for accurate single nucleotide mutation calling. We mapped a total of 174 single-nucleotide mutations, giving a single nucleotide mutation rate of 3.5 x 10(-9) per site per generation. There were no false positives in a random sample of 40 of these mutations checked by Sanger sequencing. Variation in the numbers of mutations among the MA lines was small and nonsignificant. Numbers of transition and transversion mutations were 86 and 88, respectively, implying that transition mutation rate is close to 2x the transversion rate. We observed 1.5x as many G or C --> A or T as A or T --> G or C mutations, implying that the G or C --> A or T mutation rate is close to 2x the A or T --> G or C mutation rate. The base composition of the genome is therefore not at an equilibrium determined solely by mutation. The predicted G + C content at mutational equilibrium (33%) is similar to that observed in transposable element remnants. Nearest-neighbor mutational context dependencies are nonsignificant, suggesting that this is a weak phenomenon in Drosophila. We also saw nonsignificant differences in the mutation rate between transcribed and untranscribed regions, implying that any transcription-coupled repair process is weak. Of seven short indel mutations confirmed, six were deletions, consistent with the deletion bias that is thought to exist in Drosophila.


Genetics | 2007

Joint Inference of the Distribution of Fitness Effects of Deleterious Mutations and Population Demography Based on Nucleotide Polymorphism Frequencies

Peter D. Keightley; Adam Eyre-Walker

The distribution of fitness effects of new mutations (DFE) is important for addressing several questions in genetics, including the nature of quantitative variation and the evolutionary fate of small populations. Properties of the DFE can be inferred by comparing the distributions of the frequencies of segregating nucleotide polymorphisms at selected and neutral sites in a population sample, but demographic changes alter the spectrum of allele frequencies at both neutral and selected sites, so can bias estimates of the DFE if not accounted for. We have developed a maximum-likelihood approach, based on the expected allele-frequency distribution generated by transition matrix methods, to estimate parameters of the DFE while simultaneously estimating parameters of a demographic model that allows a population size change at some time in the past. We tested the method using simulations and found that it accurately recovers simulated parameter values, even if the simulated demography differs substantially from that assumed in our analysis. We use our method to estimate parameters of the DFE for amino acid-changing mutations in humans and Drosophila melanogaster. For a model of unconditionally deleterious mutations, with effects sampled from a gamma distribution, the mean estimate for the distribution shape parameter is ∼0.2 for human populations, which implies that the DFE is strongly leptokurtic. For Drosophila populations, we estimate that the shape parameter is ∼0.35. Differences in the shape of the distribution and the mean selection coefficient between humans and Drosophila result in significantly more strongly deleterious mutations in Drosophila than in humans, and, conversely, nearly neutral mutations are significantly less frequent.


PLOS Biology | 2005

Evidence for widespread degradation of gene control regions in hominid genomes.

Peter D. Keightley; Martin J. Lercher; Adam Eyre-Walker

Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human–chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees.

Collaboration


Dive into the Peter D. Keightley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob W. Ness

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Gaffney

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiona Oliver

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge