Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D. Rathjen is active.

Publication


Featured researches published by Peter D. Rathjen.


Oncogene | 2002

Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities

Elaine Stead; Josephine White; Renate Faast; Simon J. Conn; Sherilyn Goldstone; Joy Rathjen; Urvashi Dhingra; Peter D. Rathjen; Duncan Walker; Stephen Dalton

Pluripotent cells of embryonic origin proliferate at unusually rapid rates and have a characteristic cell cycle structure with truncated gap phases. To define the molecular basis for this we have characterized the cell cycle control of murine embryonic stem cells and early primitive ectoderm-like cells. These cells display precocious Cdk2, cyclin A and cyclin E kinase activities that are conspicuously cell cycle independent. Suppression of Cdk2 activity significantly decreased cycling times of pluripotent cells, indicating it to be rate-limiting for rapid cell division, although this had no impact on cell cycle structure and the establishment of extended gap phases. Cdc2-cyclin B was the only Cdk activity that was identified to be cell cycle regulated in pluripotent cells. Cell cycle regulation of cyclin B levels and Y15 regulation of Cdc2 contribute to the temporal changes in Cdc2-cyclin B activity. E2F target genes are constitutively active throughout the cell cycle, reflecting the low activity of pocket proteins such as p107 and pRb and constitutive activity of pRb-kinases. These results show that rapid cell division cycles in primitive cells of embryonic origin are driven by extreme levels of Cdk activity that lack normal cell cycle periodicity.


Current Biology | 2001

Histone variant H2A.Z is required for early mammalian development

Renate Faast; Varaporn Thonglairoam; Thomas C. Schulz; Jacquie Beall; Julian R.E. Wells; Helen Taylor; Klaus I. Matthaei; Peter D. Rathjen; David J. Tremethick; Ian Lyons

Fundamental to the process of mammalian development is the timed and coordinated regulation of gene expression. This requires transcription of a precise subset of the total complement of genes. It is clear that chromatin architecture plays a fundamental role in this process by either facilitating or restricting transcription factor binding [1]. How such specialized chromatin structures are established to regulate gene expression is poorly understood. All eukaryotic organisms contain specialized histone variants with distinctly different amino acid sequences that are even more conserved than the major core histones [2]. On the basis of their highly conserved sequence, histone variants have been assumed critical for the function of mammalian chromatin; however, a requirement for a histone variant has not been shown in mammalian cells. Mice with a deletion of H1 degrees have been generated by gene targeting in ES cells, but these mice show no phenotypic consequences, perhaps due to redundancy of function [3]. Here we show for the first time that a mammalian histone variant, H2A.Z, plays a critical role in early development, and we conclude that this histone variant plays a pivotal role in establishing the chromatin structures required for the complex patterns of gene expression essential for normal mammalian development.


Cell | 1990

Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage

Peter D. Rathjen; Sara Toth; Anthony C. Willis; John K. Heath; Austin Smith

The differentiation of embryonic stem (ES) cells is controlled by the regulatory factor differentiation inhibiting activity/leukemia inhibitory factor (DIA/LIF). Examination of feeder cell-mediated suppression of ES cell differentiation revealed that DIA/LIF is produced both as a diffusible protein and in an immobilized form associated with the extracellular matrix. This alternative localization arises from the expression of alternate transcripts that diverge throughout exon 1. The effect of alternate first exon usage is to change the amino terminus of the primary translation product and to direct incorporation of mature, biologically active DIA/LIF into the extracellular matrix. The production of a potent regulatory factor in both diffusible and immobilized forms may be an important element of developmental control mechanisms.


Cell | 1988

HIV expression strategies: Ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems

Wilma Wilson; Martin Braddock; Sally Adams; Peter D. Rathjen; Susan M. Kingsman; Alan J. Kingsman

The pol gene of the human immunodeficiency virus (HIV-1) is expressed as a gag:pol fusion, arising from a ribosomal frameshift that brings the overlapping, out-of-phase gag and pol genes into translational phase. In this study, we show that HIV frameshifting is mediated by a very short sequence in the viral RNA. We demonstrate the importance of a homopolymeric run within this sequence and conclude that HIV frameshifting is not dependent on stem-loop structures downstream from the frameshift site. Our analysis also indicates that the sequence requirements are identical in mammalian and yeast systems.


Reproduction, Fertility and Development | 1998

Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy.

Peter D. Rathjen; Julie-Anne Lake; Linda M. Whyatt; Michael David Bettess; Joy Rathjen

Embryonic stem cells are pluripotent cells derived from the early mouse embryo that can be propagated stably in the undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in an embryonic and adult mouse in vivo, and can be induced to differentiate into many cell types in vitro. Exploitation of ES cell technology for the creation of mice bearing predetermined genetic alterations has received widespread attention because of the sophistication that it brings to the study of gene function in mammals. Analysis of cell differentiation in vitro has also been of value, leading to the identification of novel bioactive factors and the elucidation of cell specification mechanisms. In this paper, we summarise the features of pluripotent cell lines and their applications, foreshadowing the impact that these systems may have on human biology. While the isolation of definitive human pluripotent cell lines has not yet been achieved, potential applications for these cells in the study of human biology, particularly cell specification, can be envisaged. Of particular interest is the possibility that human embryonic stem cells with properties similar to mouse embryonic stem cells might provide a generic system for gene therapy.


Developmental Biology | 1992

Differentiation inhibiting activity (DIA/LIF) and mouse development

Austin Smith; Jennifer Nichols; Morag Robertson; Peter D. Rathjen

Analysis of the differentiation in culture of murine embryonic stem (ES) cells has resulted in the identification and characterization of the regulatory factor differentiation inhibiting activity (DIA). DIA specifically suppresses differentiation of the pluripotential ES cells without compromise of their developmental potential. DIA is identical to the pleiotropic cytokine leukaemia inhibitory factor (LIF) which has a broad range of biological activities in vitro and in vivo. It is produced in both diffusible and matrix-localised forms whose expression is differentially regulated. The compartmentalization of DIA/LIF and the modulation of its expression during stem cell differentiation and by other cytokines may be significant elements in the control of early embryo development. These features may also indicate general principles of the regulatory networks which govern stem cell renewal and differentiation in later development.


Current Opinion in Genetics & Development | 2001

Mouse ES cells: experimental exploitation of pluripotent differentiation potential.

Joy Rathjen; Peter D. Rathjen

Pluripotent ES cells can be used to generate a wide variety of cell populations in vitro in a manner resembling embryonic development. Recent advances in controlling ES cell differentiation, combined with the power of genetic and biochemical manipulation, are providing insights into cell biology and the determination of cell fate.


Plant Molecular Biology | 1985

Comparison of multimeric plus and minus forms of viroids and virusoids

Cheryl J. Hutchins; Paul Keese; Jane E. Visvader; Peter D. Rathjen; James L. McInnes; Robert H. Symons

SummaryIn order to investigate the mechanism of replication of viroids and virusoids, we have compared the replication intermediates of three members of each group in nucleic acid extracts of infected plants. Viroids were avocado sunblotch viroid (ASBV), citrus exocortis viroid (CEV) and coconut cadang cadang viroid (CCCV). Virusoids were from velvet tobacco mottle virus (VTMoV), solanum nodiflorum mottle virus (SNMV) and lucerne transient streak virus (LTSV). Analysis of intermediates was by the Northern hybridization technique with single-strand DNA and RNA probes prepared from recombinant DNA clones. The results obtained are discussed in terms of current models of viroid and virusoid replication.The plus RNA species consisted of an oligomeric series up to decamers based on the unit of full-length viroid or virusoid, which was always the major component, except for CEV where only monomer and dimer species were found. In the case of ASBV and the virusoids of VTMoV and SNMV, a minor, multimeric series of components (X-bands) was superimposed on the main oligomeric series.The complementary minus species proved more difficult to detect and characterise, with each viroid and virusoid exhibiting a unique pattern on Northern hybridization. However, they all had greater than unit-length minus species. In addition, minus species analogous to the plus X-bands were found in ASBV and CEV. The experimental difficulties encountered in this work are discussed in terms of the problem of detecting minus species by Northern analysis in the presence of excess complementary plus species.


Journal of Neuroscience Research | 2004

Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system?

Kenneth J.D. Lang; Joy Rathjen; Svetlana Vassilieva; Peter D. Rathjen

The many and varied proposed applications of cell replacement therapies in the treatment of human disease states, particularly those arising from cell loss or dysfunction, have been discussed widely in both the scientific and popular press. Although an attractive concept, cell therapies require the development of a readily available source of donor cells suitable for transplantation. Embryonic stem (ES) cells, with proven ability to differentiate to all cell populations of the embryo and adult in vitro, provide a potential source of therapeutic cells. The differentiation capability of mouse ES cells in vitro has been studied extensively over the last 20 years and the formation of neural precursors and neural cell lineages from mouse ES cells is well established. Cell populations highly enriched/homogenous in neural precursors have been achieved using a variety of chemical or biological inducing agents coupled with selective growth conditions. Preliminary reports suggest that similar neural enrichment is seen when these methodologies are applied to primate and human ES cells. ES cell‐derived neural precursors have been analyzed in vitro and in vivo and found to be functionally normal and, after introduction into rodent models of human neurodegenerative diseases, capable of effecting measurable disease recovery. We review progress in the formation of neural precursors from mouse ES cells, particularly the recent reports of directed differentiation of ES in response to biological inductive factors, and assess the transfer of these approaches to human ES cells.


American Journal of Physiology-cell Physiology | 2010

L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture

Jennifer M. Washington; Joy Rathjen; Fernando Felquer; Ana Lonic; Michael David Bettess; Nancy Hamra; Ljiljana Semendric; Boon Siang Nicholas Tan; Julie-Anne Lake; Rebecca A. Keough; Michael B. Morris; Peter D. Rathjen

The development of cell therapeutics from embryonic stem (ES) cells will require technologies that direct cell differentiation to specific somatic cell lineages in response to defined factors. The initial step in formation of the somatic lineages from ES cells, differentiation to an intermediate, pluripotent primitive ectoderm-like cell, can be achieved in vitro by formation of early primitive ectoderm-like (EPL) cells in response to a biological activity contained within the conditioned medium MEDII. Fractionation of MEDII has identified two activities required for EPL cell formation, an activity with a molecular mass of <3 kDa and a second, much larger species. Here, we have identified the low-molecular-weight activity as l-proline. An inhibitor of l-proline uptake, glycine, prevented the differentiation of ES cells in response to MEDII. Supplementation of the culture medium of ES cells with >100 M l-proline and some l-proline-containing peptides resulted in changes in colony morphology, cell proliferation, gene expression, and differentiation kinetics consistent with differentiation toward a primitive ectoderm-like cell. This activity appeared to be associated with l-proline since other amino acids and analogs of proline did not exhibit an equivalent activity. Activation of the mammalian target of rapamycin (mTOR) signaling pathway was found to be necessary but not sufficient for l-proline activity; addition of other activators of the mTOR signaling pathway failed to alter the ES cell phenotype. This is the first report describing a role for amino acids in the regulation of pluripotency and cell differentiation and identifies a novel role for the imino acid l-proline.

Collaboration


Dive into the Peter D. Rathjen's collaboration.

Top Co-Authors

Avatar

Joy Rathjen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Smith

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge