Peter Dörmann
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Dörmann.
Nature Biotechnology | 2000
Oliver Fiehn; Joachim Kopka; Peter Dörmann; Thomas Altmann; Richard N. Trethewey; Lothar Willmitzer
Multiparallel analyses of mRNA and proteins are central to todays functional genomics initiatives. We describe here the use of metabolite profiling as a new tool for a comparative display of gene function. It has the potential not only to provide deeper insight into complex regulatory processes but also to determine phenotype directly. Using gas chromatography/mass spectrometry (GC/MS), we automatically quantified 326 distinct compounds from Arabidopsis thaliana leaf extracts. It was possible to assign a chemical structure to approximately half of these compounds. Comparison of four Arabidopsis genotypes (two homozygous ecotypes and a mutant of each ecotype) showed that each genotype possesses a distinct metabolic profile. Data mining tools such as principal component analysis enabled the assignment of “metabolic phenotypes” using these large data sets. The metabolic phenotypes of the two ecotypes were more divergent than were the metabolic phenotypes of the single-loci mutant and their parental ecotypes. These results demonstrate the use of metabolite profiling as a tool to significantly extend and enhance the power of existing functional genomics approaches.
The Plant Cell | 2005
Michel Havaux; Françoise Eymery; Svetlana Porfirova; Pascal Rey; Peter Dörmann
Vitamin E is considered a major antioxidant in biomembranes, but little evidence exists for this function in plants under photooxidative stress. Leaf discs of two vitamin E mutants, a tocopherol cyclase mutant (vte1) and a homogentisate phytyl transferase mutant (vte2), were exposed to high light stress at low temperature, which resulted in bleaching and lipid photodestruction. However, this was not observed in whole plants exposed to long-term high light stress, unless the stress conditions were extreme (very low temperature and very high light), suggesting compensatory mechanisms for vitamin E deficiency under physiological conditions. We identified two such mechanisms: nonphotochemical energy dissipation (NPQ) in photosystem II (PSII) and synthesis of zeaxanthin. Inhibition of NPQ in the double mutant vte1 npq4 led to a marked photoinhibition of PSII, suggesting protection of PSII by tocopherols. vte1 plants accumulated more zeaxanthin in high light than the wild type, and inhibiting zeaxanthin synthesis in the vte1 npq1 double mutant resulted in PSII photoinhibition accompanied by extensive oxidation of lipids and pigments. The single mutants npq1, npq4, vte2, and vte1 showed little sensitivity to the stress treatments. We conclude that, in cooperation with the xanthophyll cycle, vitamin E fulfills at least two different functions in chloroplasts at the two major sites of singlet oxygen production: preserving PSII from photoinactivation and protecting membrane lipids from photooxidation.
Trends in Plant Science | 2002
Peter Dörmann; Christoph Benning
Chloroplast membranes contain high levels of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). The isolation of the genes involved in the biosynthesis of MGDG and DGDG, and the identification of galactolipid-deficient Arabidopsis mutants has greatly facilitated the analysis of galactolipid biosynthesis and function. Galactolipids are found in X-ray structures of photosynthetic complexes, suggesting a direct role in photosynthesis. Furthermore, galactolipids can substitute for phospholipids, as suggested by increases in the galactolipid:phospholipid ratio after phosphate deprivation. The ratio of MGDG to DGDG is also crucial for the physical phase of thylakoid membranes and might be regulated.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Svetlana Porfirova; Eveline Bergmüller; Susanne Tropf; Rainer Lemke; Peter Dörmann
Tocopherol (vitamin E) is a plant chloroplast lipid presumed to be involved in the response to oxidative stress. A tocopherol-deficient mutant (vte1) was isolated from Arabidopsis thaliana by using a TLC-based screening approach. Mutant plants lacked all four tocopherol forms and were deficient in tocopherol cyclase activity. Genetic mapping of vte1 and a genomics-based approach led to the identification of the ORF At4g32770 as a candidate gene for tocopherol cyclase. In vte1, At4g32770 contains a splicing site mutation and the corresponding mRNA expression is reduced. Expression of VTE1 in Escherichia coli resulted in the production of a protein with high tocopherol cyclase and tocotrienol cyclase activity. The VTE1 sequence shows no similarities to genes with known function, but is similar to that of SXD1, a gene that was recently isolated based on the availability of the sucrose export defective1 maize mutant (sxd1). Growth of the vte1 mutant, chlorophyll content, and photosynthetic quantum yield were similar to wild type under optimal growth conditions. Therefore, absence of tocopherol has no large impact on photosynthesis or plant viability, suggesting that other antioxidants can compensate for the loss of tocopherol. During photo-oxidative stress, chlorophyll content and photosynthetic quantum yield were slightly reduced in vte1 as compared with wild type indicating a potential role for tocopherol in maintaining an optimal photosynthesis rate under high-light stress.
The Plant Cell | 1995
Peter Dörmann; Susanne Hoffmann-Benning; Ilse Balbo; Christoph Benning
The galactolipids monogalactosyl and digalactosyl diacylglycerol occur in all higher plants and are the predominant lipid components of chloroplast membranes. They are thought to be of major importance to chloroplast morphology and physiology, although direct experimental evidence is still lacking. The enzymes responsible for final assembly of galactolipids are associated with the envelope membranes of plastids, and their biochemical analysis has been notoriously difficult. Therefore, we have chosen a genetic approach to study the biosynthesis and function of galactolipids in higher plants. We isolated a mutant of Arabidopsis that is deficient in digalactosyl diacylglycerol by directly screening a mutagenized M2 population for individuals with altered leaf lipid composition. This mutant carries a recessive nuclear mutation at a single locus designated dgd1. Backcrossed mutants show stunted growth, pale green leaf color, reduced photosynthetic capability, and altered thylakoid membrane ultrastructure.
Journal of Biological Chemistry | 2006
Pierre-Alexandre Vidi; Marion Kanwischer; Sacha Baginsky; Jotham R. Austin; Gabor Csucs; Peter Dörmann; Felix Kessler; Claire Bréhélin
Chloroplasts contain lipoprotein particles termed plastoglobules. Plastoglobules are generally believed to have little function beyond lipid storage. Here we report on the identification of plastoglobule proteins using mass spectrometry methods in Arabidopsis thaliana. We demonstrate specific plastoglobule association of members of the plastid lipid-associated proteins/fibrillin family as well as known metabolic enzymes, including the tocopherol cyclase (VTE1), a key enzyme of tocopherol (vitamin E) synthesis. Moreover, comparative analysis of chloroplast membrane fractions shows that plastoglobules are a site of vitamin E accumulation in chloroplasts. Thus, in addition to their lipid storage function, we propose that plastoglobules are metabolically active, taking part in tocopherol synthesis and likely other pathways.
Plant Physiology | 2005
Marion Kanwischer; Svetlana Porfirova; Eveline Bergmüller; Peter Dörmann
Tocopherol belongs to the Vitamin E class of lipid soluble antioxidants that are essential for human nutrition. In plants, tocopherol is synthesized in plastids where it protects membranes from oxidative degradation by reactive oxygen species. Tocopherol cyclase (VTE1) catalyzes the penultimate step of tocopherol synthesis, and an Arabidopsis (Arabidopsis thaliana) mutant deficient in VTE1 (vte1) is totally devoid of tocopherol. Overexpression of VTE1 resulted in an increase in total tocopherol of at least 7-fold in leaves, and a dramatic shift from α-tocopherol to γ-tocopherol. Expression studies demonstrated that indeed VTE1 is a major limiting factor of tocopherol synthesis in leaves. Tocopherol deficiency in vte1 resulted in the increase in ascorbate and glutathione, whereas accumulation of tocopherol in VTE1 overexpressing plants led to a decrease in ascorbate and glutathione. Deficiency in one antioxidant in vte1, vtc1 (ascorbate deficient), or cad2 (glutathione deficient) led to increased oxidative stress and to the concomitant increase in alternative antioxidants. Double mutants of vte1 were generated with vtc1 and cad2. Whereas growth, chlorophyll content, and photosynthetic quantum yield were very similar to wild type in vte1, vtc1, cad2, or vte1vtc1, they were reduced in vte1cad2, indicating that the simultaneous loss of tocopherol and glutathione results in moderate oxidative stress that affects the stability and the efficiency of the photosynthetic apparatus.
The Plant Cell | 2009
Katharina Bräutigam; Lars Dietzel; Tatjana Kleine; Elke Ströher; Dennis Wormuth; Karl-Josef Dietz; Dörte Radke; Markus Wirtz; Rüdiger Hell; Peter Dörmann; Adriano Nunes-Nesi; Nicolas Schauer; Alisdair R. Fernie; Sandra N. Oliver; Peter Geigenberger; Dario Leister; Thomas Pfannschmidt
Plants possess acclimation responses in which structural reconfigurations adapt the photosynthetic apparatus to fluctuating illumination. Long-term acclimation involves changes in plastid and nuclear gene expression and is controlled by redox signals from photosynthesis. The kinetics of these signals and the adjustments of energetic and metabolic demands to the changes in the photosynthetic apparatus are currently poorly understood. Using a redox signaling system that preferentially excites either photosystem I or II, we measured the time-dependent impact of redox signals on the transcriptome and metabolome of Arabidopsis thaliana. We observed rapid and dynamic changes in nuclear transcript accumulation resulting in differential and specific expression patterns for genes associated with photosynthesis and metabolism. Metabolite pools also exhibited dynamic changes and indicate readjustments between distinct metabolic states depending on the respective illumination. These states reflect reallocation of energy resources in a defined and reversible manner, indicating that structural changes in the photosynthetic apparatus during long-term acclimation are additionally supported at the level of metabolism. We propose that photosynthesis can act as an environmental sensor, producing retrograde redox signals that trigger two parallel adjustment loops that coordinate photosynthesis and metabolism to adapt plant primary productivity to the environment.
Plant Journal | 2008
Nicole Gaude; Yuki Nakamura; Wolf-Rüdiger Scheible; Hiroyuki Ohta; Peter Dörmann
The replacement of phospholipids by galacto- and sulfolipids in plant membranes represents an important adaptive process for growth on phosphate-limiting soils. Gene expression and lipid analyses revealed that the MYB transcription factor PHR1 that has been previously shown to regulate phosphate responses is not a major factor controlling membrane lipid changes. Candidate genes for phospholipid degradation were selected based on induction of expression during phosphate deprivation. Lipid measurements in the corresponding Arabidopsis mutants revealed that the non-specific phospholipase C5 (NPC5) is required for normal accumulation of digalactosyldiacylglycerol (DGDG) during phosphate limitation in leaves. The growth and DGDG content of a double mutant npc5 pho1 (between npc5 and the phosphate-deficient pho1 mutant) are reduced compared to parental lines. The amount of DGDG increases from approximately 15 mol% to 22 mol% in npc5, compared to 28 mol% in wild-type, indicating that NPC5 is responsible for approximately 50% of the DGDG synthesized during phosphate limitation in leaves. Expression in Escherichia coli revealed that NPC5 shows phospholipase C activity on phosphatidylcholine and phosphatidylethanolamine. A double mutant of npc5 and pldzeta2 (carrying a mutation in the phospholipase Dzeta2 gene) was generated. Lipid measurements in npc5 pldzeta2 indicated that the contribution of PLDzeta2 to DGDG production in leaves is negligible. In contrast to the chloroplast envelope localization of galactolipid synthesis enzymes, NPC5 localizes to the cytosol, suggesting that, during phosphate limitation, soluble NPC5 associates with membranes where it contributes to the conversion of phospholipids to diacylglycerol, the substrate for galactolipid synthesis.
Journal of Biological Chemistry | 2006
Till Ischebeck; Anna Maria Zbierzak; Marion Kanwischer; Peter Dörmann
Chlorophyll is the most abundant photosynthetic pigment in higher plants. During senescence, chlorophyll is hydrolyzed, resulting in the release of free phytol and chlorophyllide. Although the degradation of chlorophyllide has been studied in depth, the metabolic fate of phytol in plants is less clear. Here, we provide evidence that phytol can be incorporated into chlorophyll, tocopherol, and lipid esters by Arabidopsis seedlings. Phytol is phosphorylated to phytyl-phosphate and phytyl-diphosphate by two successive kinase activities associated with chloroplast envelope membranes of Arabidopsis. Although phytol kinase is CTP-dependent, the second kinase reaction, phytyl-phosphate kinase, shows broader specificity for CTP, GTP, UTP, and ATP. Therefore, in addition to de novo synthesis from geranylgeranyl-diphosphate, phosphorylation of free phytol represents an alternative route for phytyl-diphosphate production as the precursor for chloroplast prenyl lipid synthesis. Lipid esters are produced after feeding phytol to Arabidopsis seedlings, and they also accumulate in large amounts in leaves during senescence. The predominant phytyl ester that accumulates during senescence is hexadecatrienoic acid phytyl ester. Fatty acid phytyl ester synthesis by protein extracts of Arabidopsis is stimulated in the presence of phytol- and acyl-CoA esters. Thus, Arabidopsis contains a distinct enzymatic machinery for redirecting free phytol released from chlorophyll degradation into chloroplast lipid metabolism.