Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter E. Hamlington is active.

Publication


Featured researches published by Peter E. Hamlington.


Physics of Fluids | 2011

Interactions between turbulence and flames in premixed reacting flows

Peter E. Hamlington; Alexei Y. Poludnenko; Elaine S. Oran

The interactions between turbulence and flames in premixed reacting flows are studied for a broad range of turbulence intensities by analyzing scalar (reactant mass-fraction) gradient, vorticity, and strain rate fields. The analysis is based on fully compressible, three-dimensional numerical simulations of H2-air combustion in an unconfined domain. For low turbulence intensities, a flame reconstruction method based on the scalar gradient shows that the internal flame structure is similar to that of a laminar flame, while the magnitudes of the vorticity and strain rate are suppressed by heat release and there is substantial anisotropy in the orientation of intense vortical structures. As the turbulence intensity increases, the local flame orientation becomes increasingly isotropic, and the flame preheat zone is substantially broadened. There is, however, relatively little broadening of the reaction zone, even for high intensities. At high turbulence intensities, the vorticity and strain rate are only weakly affected by the flame, and their interactions with the scalar gradient are similar to those found in nonreacting turbulence. A decomposition of the total strain rate into components due to turbulence and the flame shows that vorticity suppression depends on the relative alignment between vorticity and the flame surface normal. This effect is used to explain the anisotropy of intense vortices at low intensities. The decomposition also reveals the separate effects of turbulent and dilatational straining on the flame width.


Journal of Physical Oceanography | 2014

Langmuir–Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown Simulations

Peter E. Hamlington; Luke Van Roekel; Baylor Fox-Kemper; Keith Julien; Gregory P. Chini

AbstractThe interactions between boundary layer turbulence, including Langmuir turbulence, and submesoscale processes in the oceanic mixed layer are described using large-eddy simulations of the spindown of a temperature front in the presence of submesoscale eddies, winds, and waves. The simulations solve the surface-wave-averaged Boussinesq equations with Stokes drift wave forcing at a resolution that is sufficiently fine to capture small-scale Langmuir turbulence. A simulation without Stokes drift forcing is also performed for comparison. Spatial and spectral properties of temperature, velocity, and vorticity fields are described, and these fields are scale decomposed in order to examine multiscale fluxes of momentum and buoyancy. Buoyancy flux results indicate that Langmuir turbulence counters the restratifying effects of submesoscale eddies, leading to small-scale vertical transport and mixing that is 4 times greater than in the simulations without Stokes drift forcing. The observed fluxes are also sh...


Physics of Fluids | 2008

Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows

Peter E. Hamlington; Jörg Schumacher; Werner J. A. Dahm

A direct Biot-Savart integration is used to decompose the strain rate into its local and nonlocal constituents, allowing the vorticity alignment with the local and nonlocal strain rate eigenvectors to be investigated. These strain rate tensor constituents are evaluated in a turbulent flow using data from highly-resolved direct numerical simulations. While the vorticity aligns preferentially with the intermediate eigenvector of the \textit{combined} strain rate, as has been observed previously, the present results for the first time clearly show that the vorticity aligns with the most extensional eigenvector of the \textit{nonlocal} strain rate. This in turn reveals a significant linear contribution to the vortex stretching dynamics in turbulent flows.


Physical Review E | 2008

Local and nonlocal strain rate fields and vorticity alignment in turbulent flows.

Peter E. Hamlington; Jörg Schumacher; Werner J. A. Dahm

Local and nonlocal contributions to the total strain rate tensor S(ij) at any point x in a flow are formulated from an expansion of the vorticity field in a local spherical neighborhood of radius R centered on x. The resulting exact expression allows the nonlocal (background) strain rate tensor S(ij)(B)(x) to be obtained from S(ij)(x). In turbulent flows, where the vorticity naturally concentrates into relatively compact structures, this allows the local alignment of vorticity with the most extensional principal axis of the background strain rate tensor to be evaluated. In the vicinity of any vortical structure, the required radius R and corresponding order n to which the expansion must be carried are determined by the viscous length scale lambda(nu). We demonstrate the convergence to the background strain rate field with increasing R and n for an equilibrium Burgers vortex, and show that this resolves the anomalous alignment of vorticity with the intermediate eigenvector of the total strain rate tensor. We then evaluate the background strain field S(ij)(B)(x) in direct numerical simulations of homogeneous isotropic turbulence where, even for the limited R and n corresponding to the truncated series expansion, the results show an increase in the expected equilibrium alignment of vorticity with the most extensional principal axis of the background strain rate tensor.


Physics of Fluids | 2012

Intermittency in premixed turbulent reacting flows

Peter E. Hamlington; Alexei Y. Poludnenko; Elaine S. Oran

Intermittency in premixed reacting flows is studied using numerical simulations of premixed flames at a range of turbulence intensities. The flames are modeled using a simplified reaction mechanism that represents a stoichiometric H2-air mixture. Intermittency is associated with high probabilities of large fluctuations in flow quantities, and these fluctuations can have substantial effects on the evolution and structure of premixed flames. Intermittency is characterized here using probability density functions (pdfs) and moments of the local enstrophy, pseudo-dissipation rate (strain rate magnitude), and scalar (reactant mass fraction) dissipation rate. Simulations of homogeneous isotropic turbulence with a nonreacting passive scalar are also carried out in order to provide a baseline for analyzing the reacting flow results. In the reacting flow simulations, conditional analyses based on local, instantaneous values of the scalar are used to study variations in the pdfs, moments, and intermittency through ...


Physics of Fluids | 2008

Reynolds stress closure for nonequilibrium effects in turbulent flows

Peter E. Hamlington; Werner J. A. Dahm

From consideration of turbulence anisotropy dynamics due to spatial or temporal variations in the mean strain rate, a new Reynolds stress closure for nonequilibrium effects in turbulent flows has been developed. This closure, formally derived from the Reynolds stress anisotropy transport equation, results in an effective strain rate tensor that accounts for the strain rate history to which the turbulence has been subjected. In contrast to prior nonequilibrium models that have sought to address nonequilibrium effects via changes in the eddy viscosity, the present approach accounts for nonequilibrium effects in the fundamental relation between the anisotropy tensor and the strain rate tensor. The time-local form of the nonequilibrium closure can be readily implemented in place of the classical equilibrium Boussinesq closure on which most existing computational frameworks are currently based. This new closure is applied here to four substantially different classes of nonequilibrium test problems. Results sho...


Journal of Geophysical Research | 2016

Effects of submesoscale turbulence on ocean tracers

Katherine M. Smith; Peter E. Hamlington; Baylor Fox-Kemper

Ocean tracers such as carbon dioxide, nutrients, plankton, and oil advect, diffuse, and react primarily in the oceanic mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the spatial distributions of these tracers due to turbulent stirring, particularly in the submesoscale range where partly geostrophic fronts and eddies and small-scale three-dimensional turbulence are simultaneously active. In this study, a large eddy simulation spanning horizontal scales from 20 km down to 5 m is used to examine the effects of multiscale turbulent mixing on nonreactive passive ocean tracers from interior and sea-surface sources. The simulation includes the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined in order to understand the respective impacts of small-scale and submesoscale motions on tracer transport. Tracer properties are characterized using spatial fields and statistics, multiscale fluxes, and spectra, and the results detail how tracer mixing depends on air-sea tracer flux rate, tracer release depth, and flow regime. Although vertical fluxes of buoyancy by submesoscale eddies compete with mixing by Langmuir turbulence, vertical fluxes of tracers are often dominated by Langmuir turbulence, particularly for tracers that are released near the mixed-layer base or that dissolve rapidly through the surface, even in regions with pronounced submesoscale activity. Early in the evolution of some tracers, negative eddy diffusivities occur co-located with regions of negative potential vorticity, suggesting that symmetric instabilities or other submesoscale phenomenon may act to oppose turbulent mixing.


Physica D: Nonlinear Phenomena | 2012

Statistics of the energy dissipation rate and local enstrophy in turbulent channel flow

Peter E. Hamlington; Dmitry Krasnov; Thomas Boeck; Jörg Schumacher

Abstract Using high-resolution direct numerical simulations, the height and Reynolds number dependence of high-order statistics of the energy dissipation rate and local enstrophy are examined in incompressible, fully developed turbulent channel flow. The statistics are studied over a range of wall distances, spanning the viscous sublayer to the channel flow centerline, for friction Reynolds numbers R e τ = 180 and R e τ = 381 . The high resolution of the simulations allows dissipation and enstrophy moments up to fourth order to be calculated. These moments show a dependence on wall distance, and Reynolds number effects are observed at the edge of the logarithmic layer. Conditional analyses based on locations of intense rotation are also carried out in order to determine the contribution of vortical structures to the dissipation and enstrophy moments. Our analysis shows that, for the simulation at the larger Reynolds number, small-scale fluctuations of both dissipation and enstrophy show relatively small variations for z + ≳ 100 .


Journal of Geophysical Research | 2016

Surface waves affect frontogenesis

Nobuhiro Suzuki; Baylor Fox-Kemper; Peter E. Hamlington; Luke Van Roekel

This paper provides a detailed analysis of momentum, angular momentum, vorticity, and energy budgets of a submesoscale front undergoing frontogenesis driven by an upper-ocean, submesoscale eddy field in a Large Eddy Simulation (LES). The LES solves the wave-averaged, or Craik-Leibovich, equations in order to account for the Stokes forces that result from interactions between nonbreaking surface waves and currents, and resolves both submesoscale eddies and boundary layer turbulence down to 4.9 m × 4.9 m × 1.25 m grid scales. It is found that submesoscale frontogenesis differs from traditional frontogenesis theory due to four effects: Stokes forces, momentum and kinetic energy transfer from submesoscale eddies to frontal secondary circulations, resolved turbulent stresses, and unbalanced torque. In the energy, momentum, angular momentum, and vorticity budgets for the frontal overturning circulation, the Stokes shear force is a leading-order contributor, typically either the second or third largest source of frontal overturning. These effects violate hydrostatic and thermal wind balances during submesoscale frontogenesis. The effect of the Stokes shear force becomes stronger with increasing alignment of the front and Stokes shear and with a nondimensional scaling. The Stokes shear force and momentum transfer from submesoscale eddies significantly energize the frontal secondary circulation along with the buoyancy.


Geophysical Research Letters | 2015

Effects of climate oscillations on wind resource variability in the United States

B. D. Hamlington; Peter E. Hamlington; S. G. Collins; Spencer Alexander; Kwang-Yul Kim

Natural climate variations in the United States wind resource are assessed by using cyclostationary empirical orthogonal functions (CSEOFs) to decompose wind reanalysis data. Compared to approaches that average climate signals or assume stationarity of the wind resource on interannual time scales, the CSEOF analysis isolates variability associated with specific climate oscillations, as well as their modulation from year to year. Contributions to wind speed variability from the modulated annual cycle (MAC) and the El Nino-Southern Oscillation (ENSO) are quantified, and information provided by the CSEOF analysis further allows the spatial variability of these effects to be determined. The impacts of the MAC and ENSO on the wind resource are calculated at existing wind turbine locations in the United States, revealing variations in the wind speed of up to 30% at individual sites. The results presented here have important implications for predictions of wind plant power output and siting.

Collaboration


Dive into the Peter E. Hamlington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Towery

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torrey R. Hayden

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Gregory B. Rieker

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jason D. Christopher

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ryan Darragh

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Katherine M. Smith

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ryan N. King

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge