Peter E. Light
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter E. Light.
Circulation | 2007
Stephen L. Archer; Daniel Soliman; Vikram Gurtu; Rohit Moudgil; Alois Haromy; Chantal St. Aubin; Linda Webster; Ivan M. Rebeyka; David B. Ross; Peter E. Light; Jason R.B. Dyck; Evangelos D. Michelakis
Background— Sildenafil was recently approved for the treatment of pulmonary arterial hypertension. The beneficial effects of phosphodiesterase type 5 (PDE5) inhibitors in pulmonary arterial hypertension are thought to result from relatively selective vasodilatory and antiproliferative effects on the pulmonary vasculature and, on the basis of early data showing lack of significant PDE5 expression in the normal heart, are thought to spare the myocardium. Methods and Results— We studied surgical specimens from 9 patients and show here for the first time that although PDE5 is not expressed in the myocardium of the normal human right ventricle (RV), mRNA and protein are markedly upregulated in hypertrophied RV (RVH) myocardium. PDE5 also is upregulated in rat RVH. PDE5 inhibition (with either MY-5445 or sildenafil) significantly increases contractility, measured in the perfused heart (modified Langendorff preparation) and isolated cardiomyocytes, in RVH but not normal RV. PDE5 inhibition leads to increases in both cGMP and cAMP in RVH but not normal RV. Protein kinase G activity is suppressed in RVH, explaining why the PDE5 inhibitor–induced increase in cGMP does not lead to inhibition of contractility. Rather, it leads to inhibition of the cGMP-sensitive PDE3, explaining the increase in cAMP and contractility. This is further supported by our findings that, in RVH protein kinase A, inhibition completely inhibits PDE5-induced inotropy, whereas protein kinase G inhibition does not. Conclusions— The ability of PDE5 inhibitors to increase RV inotropy and to decrease RV afterload without significantly affecting systemic hemodynamics makes them ideal for the treatment of diseases affecting the RV, including pulmonary arterial hypertension.
Nature | 2008
Penny Y.T. Wang; Liora Caspi; Carol K.L. Lam; Madhu Chari; Xiaosong Li; Peter E. Light; Roger Gutierrez-Juarez; Michelle Ang; Gary J. Schwartz; Tony K.T. Lam
Energy and glucose homeostasis are regulated by food intake and liver glucose production, respectively. The upper intestine has a critical role in nutrient digestion and absorption. However, studies indicate that upper intestinal lipids inhibit food intake as well in rodents and humans by the activation of an intestine–brain axis. In parallel, a brain–liver axis has recently been proposed to detect blood lipids to inhibit glucose production in rodents. Thus, we tested the hypothesis that upper intestinal lipids activate an intestine–brain–liver neural axis to regulate glucose homeostasis. Here we demonstrate that direct administration of lipids into the upper intestine increased upper intestinal long-chain fatty acyl-coenzyme A (LCFA-CoA) levels and suppressed glucose production. Co-infusion of the acyl-CoA synthase inhibitor triacsin C or the anaesthetic tetracaine with duodenal lipids abolished the inhibition of glucose production, indicating that upper intestinal LCFA-CoAs regulate glucose production in the preabsorptive state. Subdiaphragmatic vagotomy or gut vagal deafferentation interrupts the neural connection between the gut and the brain, and blocks the ability of upper intestinal lipids to inhibit glucose production. Direct administration of the N-methyl-d-aspartate ion channel blocker MK-801 into the fourth ventricle or the nucleus of the solitary tract where gut sensory fibres terminate abolished the upper-intestinal-lipid-induced inhibition of glucose production. Finally, hepatic vagotomy negated the inhibitory effects of upper intestinal lipids on glucose production. These findings indicate that upper intestinal lipids activate an intestine–brain–liver neural axis to inhibit glucose production, and thereby reveal a previously unappreciated pathway that regulates glucose homeostasis.
Journal of Biological Chemistry | 2008
Anita Y.M. Chan; Vernon W. Dolinsky; Carrie-Lynn M. Soltys; Benoit Viollet; Shairaz Baksh; Peter E. Light; Jason R. B. Dyck
Whereas studies involving animal models of cardiovascular disease demonstrated that resveratrol is able to inhibit hypertrophic growth, the mechanisms involved have not been elucidated. Because studies in cells other than cardiomyocytes revealed that AMP-activated protein kinase (AMPK) and Akt are affected by resveratrol, we hypothesized that resveratrol prevents cardiac myocyte hypertrophy via these two kinase systems. Herein, we demonstrate that resveratrol reduces phenylephrine-induced protein synthesis and cell growth in rat cardiac myocytes via alterations of intracellular pathways involved in controlling protein synthesis (p70S6 kinase and eukaryotic elongation factor-2). Additionally, we demonstrate that resveratrol negatively regulates the calcineurin-nuclear factor of activated T cells pathway thus modifying a critical component of the transcriptional mechanism involved in pathological cardiac hypertrophy. Our data also indicate that these effects of resveratrol are mediated via AMPK activation and Akt inhibition, and in the case of AMPK, is dependent on the presence of the AMPK kinase, LKB1. Taken together, our data suggest that resveratrol exerts anti-hypertrophic effects by activating AMPK via LKB1 and inhibiting Akt, thus suppressing protein synthesis and gene transcription.
Circulation | 2009
Vernon W. Dolinsky; Anita Y.M. Chan; Isabelle Robillard Frayne; Peter E. Light; Christine Des Rosiers; Jason R.B. Dyck
Background— Master regulators of protein synthesis such as mammalian target of rapamycin (mTOR) and p70S6 kinase contribute to left ventricular hypertrophy. These prohypertrophic pathways are modulated by a number of kinase cascades, including the hierarchical LKB1/AMP-activated protein kinase (AMPK) energy-sensing pathway. Because oxidative stress inhibits the LKB1/AMPK signaling axis to promote abnormal cell growth in cancer cells, we investigated whether oxidative stress associated with hypertension also results in the inhibition of this kinase circuit to contribute to left ventricular hypertrophy. Methods and Results— In the spontaneously hypertensive rat, a well-established genetic model of hypertension and subsequent cardiac hypertrophy, the development of left ventricular hypertrophy is associated with an increase in the electrophilic lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE). Using isolated cardiomyocytes, we show that elevated levels of HNE result in the formation of HNE-LKB1 adducts that inhibit LKB1 and subsequent AMPK activity. Consistent with inhibition of the LKB1/AMPK signaling pathway, the mTOR/p70S6 kinase system is activated, which is permissive for cardiac myocyte cell growth. Treatment of cardiomyocytes with resveratrol prevents HNE modification of the LKB1/AMPK signaling axis and blunts the prohypertrophic p70S6 kinase response. Furthermore, administration of resveratrol to spontaneously hypertensive rats results in increased AMPK phosphorylation and activity and reduced left ventricular hypertrophy. Conclusions— Our data identify a molecular mechanism in the cardiomyocyte involving the oxidative stress–derived lipid peroxidation byproduct HNE and the LKB1/AMPK signaling pathway that contributes to the development of left ventricular hypertrophy. We also suggest that resveratrol may be a potential therapy for patients at risk for developing pathological cardiac hypertrophy by preventing this prohypertrophic process.
Journal of Clinical Investigation | 2013
Thomas J. Wang; Debby Ngo; Nikolaos Psychogios; Andre Dejam; Martin G. Larson; Anahita Ghorbani; John O’Sullivan; Susan Cheng; Eugene P. Rhee; Sumita Sinha; Elizabeth L. McCabe; Caroline S. Fox; Christopher J. O’Donnell; Jennifer E. Ho; Jose C. Florez; Martin Magnusson; Kerry A. Pierce; Amanda Souza; Yi Yu; Christian C. Carter; Peter E. Light; Olle Melander; Clary B. Clish; Robert E. Gerszten
Improvements in metabolite-profiling techniques are providing increased breadth of coverage of the human metabolome and may highlight biomarkers and pathways in common diseases such as diabetes. Using a metabolomics platform that analyzes intermediary organic acids, purines, pyrimidines, and other compounds, we performed a nested case-control study of 188 individuals who developed diabetes and 188 propensity-matched controls from 2,422 normoglycemic participants followed for 12 years in the Framingham Heart Study. The metabolite 2-aminoadipic acid (2-AAA) was most strongly associated with the risk of developing diabetes. Individuals with 2-AAA concentrations in the top quartile had greater than a 4-fold risk of developing diabetes. Levels of 2-AAA were not well correlated with other metabolite biomarkers of diabetes, such as branched chain amino acids and aromatic amino acids, suggesting they report on a distinct pathophysiological pathway. In experimental studies, administration of 2-AAA lowered fasting plasma glucose levels in mice fed both standard chow and high-fat diets. Further, 2-AAA treatment enhanced insulin secretion from a pancreatic β cell line as well as murine and human islets. These data highlight a metabolite not previously associated with diabetes risk that is increased up to 12 years before the onset of overt disease. Our findings suggest that 2-AAA is a marker of diabetes risk and a potential modulator of glucose homeostasis in humans.
The FASEB Journal | 2001
Peter E. Light; Hussein D. Kanji; Jocelyn E. Manning Fox; Robert J. French
The protective roles of sarcolemmal (sarc) and mitochondrial (mito)KATP channels are un‐clear despite their apparent importance to ischemic preconditioning. We examined these roles by monitoring intracellular calcium ([Ca]int), using fura‐2 and fluo‐3, in enzymatically isolated rat right ventricular myocytes. Myocyte mortality, estimated using a trypan blue assay, changed approximately in parallel with changes in [Ca]int. Chemically induced hypoxia (CIH), induced by application of cyanide and 2‐deoxy‐glucose, caused a steady rise in [Ca]int. Calcium increased more rapidly on ‘reoxygenation’ by return to control solutions. The protein kinase C (PKC) activator PMA abolished both phases of calcium increase. The mitoKATP channel‐selective blocker 5‐hydroxydecanoate partially prevented the PMA‐induced protection during CIH, but not during reoxygenation. In contrast, HMR 1098, a sarcKATP channel‐selective blocker, abolished protection only during the reoxygenation. Adenosine (A1) receptor activation prevented or reduced increases in [Ca]int and improved cell viability via a PKC and mito/sarcKATP channel‐dependent mechanism. PKC‐dependent protection against cytoplasmic calcium increases was also observed in a human cell line (tsA201) transiently expressing sarcKATP channels. Protection was abolished only during the reoxygenation phase by the amino acid substitution (T180A) in the pore‐forming Kir6.2 subunit, a mutation previously shown to prevent PKC‐dependent modulation. Our data suggest that sarc and mitoKATP channel populations play distinct protective roles, triggered by PKC and/or adenosine, during chemically induced hypoxia/reoxygenation.—Light, P. E., Kanji, H. D., Manning Fox, J. E., French, R. J. Distinct myoprotective roles of cardiac sarcolem‐mal and mitochondrial KATP channels during metabolic inhibition and recovery. FASEB J. 15, 2586–2594 (2001)
Diabetes | 2009
Kevin S.C. Hamming; Daniel Soliman; Omid Niazi; Yiqiao Lang; Anna L. Gloyn; Peter E. Light
OBJECTIVE In the pancreatic β-cell, ATP-sensitive K+ (KATP) channels couple metabolism with excitability and consist of Kir6.2 and SUR1 subunits encoded by KCNJ11 and ABCC8, respectively. Sulfonylureas, which inhibit the KATP channel, are used to treat type 2 diabetes. Rare activating mutations cause neonatal diabetes, whereas the common variants, E23K in KCNJ11 and S1369A in ABCC8, are in strong linkage disequilibrium, constituting a haplotype that predisposes to type 2 diabetes. To date it has not been possible to establish which of these represents the etiological variant, and functional studies are inconsistent. Furthermore, there have been no studies of the S1369A variant or the combined effect of the two on KATP channel function. RESEARCH DESIGN AND METHODS The patch-clamp technique was used to study the nucleotide sensitivity and sulfonylurea inhibition of recombinant human KATP channels containing either the K23/A1369 or E23/S1369 variants. RESULTS ATP sensitivity of the KATP channel was decreased in the K23/A1369 variant (half-maximal inhibitory concentration [IC50] = 8.0 vs. 2.5 μmol/l for the E23/S1369 variant), although there was no difference in ADP sensitivity. The K23/A1369 variant also displayed increased inhibition by gliclazide, an A-site sulfonylurea drug (IC50 = 52.7 vs. 188.7 nmol/l for the E23/S1369 variant), but not by glibenclamide (AB site) or repaglinide (B site). CONCLUSIONS Our findings indicate that the common K23/A1369 variant KATP channel displays decreased ATP inhibition that may contribute to the observed increased risk for type 2 diabetes. Moreover, the increased sensitivity of the K23/A1369 variant to the A-site sulfonylurea drug gliclazide may provide a pharmacogenomic therapeutic approach for patients with type 2 diabetes who are homozygous for both risk alleles.
Circulation | 2003
Peter E. Light; Catriona H.R. Wallace; Jason R. B. Dyck
Background—Some PRKAG2 mutations in the human gene encoding for the &ggr;-subunit of the adenosine monophosphate–activated protein kinase (AMPK) recently have been shown to cause rhythm disturbances (often fatal) in affected patients. Methods and Results—Rat ventricular myocytes were infected with an adenoviral vector designed to express a truncated constitutively active mutant (T172D) of the AMPK &agr;1-subunit (CA-AMPK). The human cardiac sodium channel hH1 and CA-AMPK were also coexpressed in a mammalian cell line. Patch-clamp techniques were used to measure myocyte action potentials and recombinant hH1 sodium channel currents. Our results demonstrate that action potential duration is significantly prolonged in myocytes expressing the CA-AMPK construct, leading to the production of potentially arrhythmogenic early afterdepolarizations. Recombinant sodium channel current analysis revealed that expression of CA-AMPK significantly slowed open-state inactivation and shifted the voltage-activation curve in a hyperpolarizing direction. Conclusion—We propose that sodium channels may be substrates for AMPK, possibly contributing to the observed arrhythmogenic activity in patients with some PRKAG2 mutations.
The FASEB Journal | 2003
Wasim El-kholy; Patrick E. MacDonald; Jia-Hui Lin; Jing Wang; Jocelyn E. Manning Fox; Peter E. Light; Qinghua Wang; Robert G. Tsushima; Michael B. Wheeler
Voltage‐dependent K+ (Kv) channels negatively regulate Ca2+ entry into pancreatic β‐cells by repolarizing glucose‐stimulated action potentials. A role for phosphatidylinositol 3‐kinase (PI3K) modulation of Kv channel function was investigated using the PI3K inhibitors wortmannin and LY294002, and LY303511, a negative control compound with respect to PI3K activity. In MIN6 insulinoma cells, wortmannin (100 nM) had no effect on whole‐cell outward K+ currents, but LY294002 and LY303511 reversibly blocked currents in a dose‐dependent manner (IC50=9.0±0.7 µM and 64.6±9.1 µM, respectively). Western blotting confirmed the specific inhibitory effects of LY294002 and wortmannin on insulin‐stimulated PI3K activity. Kv currents in rat β‐cells at near physiological temperatures were inhibited 92% by 25 µM LY294002. Kv2.1 and Kv1.4 are highly expressed in β‐cells, and in Kv2.1‐transfected tsA201 cells, 50 µM LY294002 and 100 µM LY303511 reversibly inhibited currents by 99% and 41%, respectively. In Kv1.4‐transfected tsA201 cells, 50 µM LY294002 reduced the inactivation time constant from 73 to 18 ms. The insulinotropic properties of LY294002 and its effects in other excitable cells may be caused by inhibition of Kv currents rather than PI3K antagonism. Furthermore, LY294002 may represent a novel structure from which future Kv channel blockers may be developed.
Human Genetics | 2005
Michael J. Riedel; Diana Steckley; Peter E. Light
The ATP-sensitive potassium (KATP) channel couples membrane excitability to cellular metabolism and is a critical mediator in the process of glucose-stimulated insulin secretion. Increasing numbers of KATP channel polymorphisms are being described and linked to altered insulin secretion indicating that genes encoding this ion channel could be susceptibility markers for type-2 diabetes. Genetic variation of KATP channels may result in altered β-cell electrical activity, glucose homeostasis, and increased susceptibility to type-2 diabetes. Of particular interest is the Kir6.2 E23K polymorphism, which is linked to increased susceptibility to type-2 diabetes in Caucasian populations and may also be associated with weight gain and obesity, both of which are major diabetes risk factors. This association highlights the potential contribution of both genetic and environmental factors to the development and progression of type-2 diabetes. In addition, the common occurrence of the E23K polymorphism in Caucasian populations may have conferred an evolutionary advantage to our ancestors. This review will summarize the current status of the association of KATP channel polymorphisms with type-2 diabetes, focusing on the possible mechanisms by which these polymorphisms alter glucose homeostasis and offering insights into possible evolutionary pressures that may have contributed to the high prevalence of KATP channel polymorphisms in the Caucasian population.