Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter E. Wright is active.

Publication


Featured researches published by Peter E. Wright.


Nature Reviews Molecular Cell Biology | 2005

Intrinsically unstructured proteins and their functions.

H. Jane Dyson; Peter E. Wright

Many gene sequences in eukaryotic genomes encode entire proteins or large segments of proteins that lack a well-structured three-dimensional fold. Disordered regions can be highly conserved between species in both composition and sequence and, contrary to the traditional view that protein function equates with a stable three-dimensional structure, disordered regions are often functional, in ways that we are only beginning to discover. Many disordered segments fold on binding to their biological targets (coupled folding and binding), whereas others constitute flexible linkers that have a role in the assembly of macromolecular arrays.


Current Opinion in Structural Biology | 2002

Coupling of folding and binding for unstructured proteins.

H. Jane Dyson; Peter E. Wright

There are now numerous examples of proteins that are unstructured or only partially structured under physiological conditions and yet are nevertheless functional. Such proteins are especially prevalent in eukaryotes. In many cases, intrinsically disordered proteins adopt folded structures upon binding to their biological targets. Many new examples of coupled folding and binding events have been reported recently, providing new insights into mechanisms of molecular recognition.


Current Opinion in Structural Biology | 2001

Zinc finger proteins: new insights into structural and functional diversity

John H. Laity; Brian M. Lee; Peter E. Wright

Zinc finger proteins are among the most abundant proteins in eukaryotic genomes. Their functions are extraordinarily diverse and include DNA recognition, RNA packaging, transcriptional activation, regulation of apoptosis, protein folding and assembly, and lipid binding. Zinc finger structures are as diverse as their functions. Structures have recently been reported for many new zinc finger domains with novel topologies, providing important insights into structure/function relationships. In addition, new structural studies of proteins containing the classical Cys(2)His(2) zinc finger motif have led to novel insights into mechanisms of DNA binding and to a better understanding of their broader functions in transcriptional regulation.


Nature | 2007

Mechanism of coupled folding and binding of an intrinsically disordered protein

Kenji Sugase; H. Jane Dyson; Peter E. Wright

Protein folding and binding are analogous processes, in which the protein ‘searches’ for favourable intramolecular or intermolecular interactions on a funnelled energy landscape. Many eukaryotic proteins are disordered under physiological conditions, and fold into ordered structures only on binding to their cellular targets. The mechanism by which folding is coupled to binding is poorly understood, but it has been hypothesized on theoretical grounds that the binding kinetics may be enhanced by a ‘fly-casting’ effect, where the disordered protein binds weakly and non-specifically to its target and folds as it approaches the cognate binding site. Here we show, using NMR titrations and 15N relaxation dispersion, that the phosphorylated kinase inducible activation domain (pKID) of the transcription factor CREB forms an ensemble of transient encounter complexes on binding to the KIX domain of the CREB binding protein. The encounter complexes are stabilized primarily by non-specific hydrophobic contacts, and evolve by way of an intermediate to the fully bound state without dissociation from KIX. The carboxy-terminal helix of pKID is only partially folded in the intermediate, and becomes stabilized by intermolecular interactions formed in the final bound state. Future applications of our method will provide new understanding of the molecular mechanisms by which intrinsically disordered proteins perform their diverse biological functions.


Current Opinion in Structural Biology | 2009

Linking folding and binding

Peter E. Wright; H. Jane Dyson

Many cellular proteins are intrinsically disordered and undergo folding, in whole or in part, upon binding to their physiological targets. The past few years have seen an exponential increase in papers describing characterization of intrinsically disordered proteins, both free and bound to targets. Although NMR spectroscopy remains the favored tool, a number of new biophysical techniques are proving exceptionally useful in defining the limits of the conformational ensembles. Advances have been made in prediction of the recognition elements in disordered proteins, in elucidating the kinetics and mechanism of the coupled folding and binding process, and in understanding the role of post-translational modifications in tuning the biological response. Here we review these and other recent advances that are providing new insights into the conformational propensities and interactions of intrinsically disordered proteins and are beginning to reveal general principles underlying their biological functions.


Journal of Magnetic Resonance | 1991

Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy

Arthur G. Palmer; John Cavanagh; Peter E. Wright; Mark Rance

Abstract The sensitivity of proton-detected two-dimensional heteronuclear correlation NMR spectroscopy can be increased by as much as a factor of √2 relative to that of the conventional methods, for heteronuclei with a single attached proton. The enhanced sensitivity is obtained by refocusing and detecting two orthogonal in-phase proton magnetization components, rather than the single component recorded conventionally. The two magnetization components are deconvoluted to produce two pure-phase spectra that are added together to produce a spectrum with an enhanced signal-to-noise ratio. Methods for improving the sensitivity of the main classes of heteronuclear correlation experiments are presented and the effect of relaxation during the new experiments on the sensitivity enhancement is discussed. The new methods are demonstrated by comparing conventional and sensitivity-enhanced 1H-15N heteronuclear correlation spectra of bovine pancreatic trypsin inhibitor at 15N natural abundance.


Science | 2006

The dynamic energy landscape of dihydrofolate reductase catalysis.

David D. Boehr; Dan McElheny; H. Jane Dyson; Peter E. Wright

We used nuclear magnetic resonance relaxation dispersion to characterize higher energy conformational substates of Escherichia coli dihydrofolate reductase. Each intermediate in the catalytic cycle samples low-lying excited states whose conformations resemble the ground-state structures of preceding and following intermediates. Substrate and cofactor exchange occurs through these excited substates. The maximum hydride transfer and steady-state turnover rates are governed by the dynamics of transitions between ground and excited states of the intermediates. Thus, the modulation of the energy landscape by the bound ligands funnels the enzyme through its reaction cycle along a preferred kinetic path.


Cell | 1997

Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions

Ishwar Radhakrishnan; Gabriela C Pérez-Alvarado; David Parker; H. Jane Dyson; Marc Montminy; Peter E. Wright

The nuclear factor CREB activates transcription of target genes in part through direct interactions with the KIX domain of the coactivator CBP in a phosphorylation-dependent manner. The solution structure of the complex formed by the phosphorylated kinase-inducible domain (pKID) of CREB with KIX reveals that pKID undergoes a coil-->helix folding transition upon binding to KIX, forming two alpha helices. The amphipathic helix alphaB of pKID interacts with a hydrophobic groove defined by helices alpha1 and alpha3 of KIX. The other pKID helix, alphaA, contacts a different face of the alpha3 helix. The phosphate group of the critical phosphoserine residue of pKID forms a hydrogen bond to the side chain of Tyr-658 of KIX. The structure provides a model for interactions between other transactivation domains and their targets.


Journal of Molecular Biology | 1988

Folding of immunogenic peptide fragments of proteins in water solution: I. Sequence requirements for the formation of a reverse turn

H. Jane Dyson; Mark Rance; Richard A. Houghten; Richard A. Lerner; Peter E. Wright

A systematic examination by 1H nuclear magnetic resonance of the population of beta-turn-containing conformers in several series of short linear peptides in water solution has demonstrated a dependence on amino acid sequence which has important implications for initiation of protein folding. The peptides consist of a number of variants of the sequence Tyr-Pro-Tyr-Asp, the trans isomer of which was previously shown to contain a reverse turn in water. Two-dimensional rotating-frame nuclear Overhauser effect spectroscopy provides unequivocal evidence that substantial populations of reverse turn conformations occur in water solutions of certain of these peptides. In the unfolded state, the peptides adopt predominantly extended chain (beta) conformations in water. It appears probable from the nuclear Overhauser effect connectivities observed that the reverse turns in the trans isomers are predominantly type II. The low temperature coefficient of the amide proton resonance of the residue at position 4 of the turn suggests the presence of an intramolecular hydrogen bond. The presence of the beta-turn conformation has been confirmed for certain peptides by circular dichroism measurements. Substitutions at positions 3 and 4 in the sequence Tyr-Pro-Tyr-Asp-Val can enhance or abolish the beta-turn population in the trans peptide isomers. The residue at position 3 of the turn is the primary determinant of its stability. A small amount of additional stabilization appears to result from an electrostatic interaction between the side-chain of residue 4 and the unblocked amino terminus. For peptides of the series Tyr-Pro-X-Asp-Val, where X represents all L-amino acid except Trp and Pro, the temperature coefficient of the Asp4 amide proton resonance provides a measure of the beta-turn population. The beta-turn populations in water solution measured in this way correlate with the beta-turn probabilities determined from protein crystal structures. This indicates that it is frequently the local amino acid sequence, rather than medium- to long-range interactions in the folded protein, that determines the beta-turn conformation in the folded state. Such sequences are excellent candidates for protein folding initiation sites. A high population of structured forms appears to be present in the cis isomer of certain of the peptides, as shown by a considerable increase in the proportion of the cis isomer and by measurement of nuclear Overhauser effects and 3JN alpha coupling constants.(ABSTRACT TRUNCATED AT 400 WORDS)


Chemical Reviews | 2014

Classification of Intrinsically Disordered Regions and Proteins.

Robin van der Lee; Marija Buljan; Benjamin Lang; Robert J. Weatheritt; Gary W. Daughdrill; A. Keith Dunker; Monika Fuxreiter; Julian Gough; Joerg Gsponer; David Jones; Philip M. Kim; Richard W. Kriwacki; Christopher J. Oldfield; Rohit V. Pappu; Peter Tompa; Vladimir N. Uversky; Peter E. Wright; M. Madan Babu

1.1. Uncharacterized Protein Segments Are a Source of Functional Novelty Over the past decade, we have observed a massive increase in the amount of information describing protein sequences from a variety of organisms.1,2 While this may reflect the diversity in sequence space, and possibly also in function space,3 a large proportion of the sequences lacks any useful function annotation.4,5 Often these sequences are annotated as putative or hypothetical proteins, and for the majority their functions still remain unknown.6,7 Suggestions about potential protein function, primarily molecular function, often come from computational analysis of their sequences. For instance, homology detection allows for the transfer of information from well-characterized protein segments to those with similar sequences that lack annotation of molecular function.8−10 Other aspects of function, such as the biological processes proteins participate in, may come from genetic- and disease-association studies, expression and interaction network data, and comparative genomics approaches that investigate genomic context.11−17 Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. Thus, uncharacterized protein segments are likely to be a large source of functional novelty relevant for discovering new biology.

Collaboration


Dive into the Peter E. Wright's collaboration.

Top Co-Authors

Avatar

H. Jane Dyson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dyson Hj

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Chung

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Rance

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Gerard Kroon

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Lerner

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge