Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Engström is active.

Publication


Featured researches published by Peter Engström.


Plant Physiology | 2005

Homeodomain Leucine Zipper Class I Genes in Arabidopsis. Expression Patterns and Phylogenetic Relationships

Eva Henriksson; Anna S. B. Olsson; Henrik Johannesson; Henrik Johansson; Johannes Hanson; Peter Engström; Eva Söderman

Members of the homeodomain leucine zipper (HDZip) family of transcription factors are present in a wide range of plants, from mosses to higher plants, but not in other eukaryotes. The HDZip genes act in developmental processes, including vascular tissue and trichome development, and several of them have been suggested to be involved in the mediation of external signals to regulate plant growth. The Arabidopsis (Arabidopsis thaliana) genome contains 47 HDZip genes, which, based on sequence criteria, have been grouped into four different classes: HDZip I to IV. In this article, we present an overview of the class I HDZip genes in Arabidopsis. We describe their expression patterns, transcriptional regulation properties, duplication history, and phylogeny. The phylogeny of HDZip class I genes is supported by data on the duplication history of the genes, as well as the intron/exon patterning of the HDZip-encoding motifs. The HDZip class I genes were found to be widely expressed and partly to have overlapping expression patterns at the organ level. Further, abscisic acid or water deficit treatments and different light conditions affected the transcript levels of a majority of the HDZip I genes. Within the gene family, our data show examples of closely related HDZip genes with similarities in the function of the gene product, but a divergence in expression pattern. In addition, six HDZip class I proteins tested were found to be activators of gene expression. In conclusion, several HDZip I genes appear to regulate similar cellular processes, although in different organs or tissues and in response to different environmental signals.


Plant Molecular Biology | 1999

The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions

Eva Söderman; Mattias Hjellström; Jan Fahleson; Peter Engström

Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors as yet found only in plants. We have characterized one HD-Zip gene, ATHB6, from Arabidopsis thaliana. ATHB6 was expressed constitutively in seedlings, but significantly up-regulated in seedlings subjected to water deficit, osmotic stress or exogenous treatment with abscisic acid (ABA), an induction being detectable within 30 min. The ATHB6 induction was impaired in the two ABA-insensitive mutants, abi1 and abi2, but unaffected in the abi3 mutation. The induction was ABA-dependent, since no increase in ATHB6 transcript was detected in the ABA-deficient mutant aba-3 subjected to drought treatment. These results suggest that ATHB6 may act downstream to both ABI1 and ABI2 in a signal transduction pathway mediating a drought stress response. A translational fusion of the ATHB6 promoter with the reporter gene GUS (ATHB6::GUS) in transgenic A. thaliana plants showed high-level expression in leaf primordia. Expression in developing cotyledons, leaves, roots and carpels was restricted to regions of cell division and/or differentiation. The expression in the cotyledons was detectable in the epidermis and high in the stomatal cells. In mature cotyledons and leaves the marker gene was expressed only in the vascular tissue. These expression data suggest ATHB6 to have a function related to cell division and/or differentiation in developing organs.


Plant Molecular Biology | 2004

The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis

Anna S. B. Olsson; Peter Engström; Eva Söderman

The Arabidopsisthaliana homeodomain leucine-zipper gene ATHB7, which is active specifically under water deficit conditions, is proposed to act as a negative regulator of growth (Söderman et al., 1996, Plant J. 10: 375 381; Hjellström et al., 2003, Plant Cell Environ 26: 1127 1136). In this report we demonstrate that the paralogous gene, ATHB12, has a similar expression pattern and function. ATHB12,like ATHB7,was up-regulated during water deficit conditions, the up-regulation being dependent on abscisic acid (ABA) and on the activity of the Ser/Thr phosphatases ABI1 and ABI2. Plants that are mutant for ATHB12, as a result of T-DNA insertions in the ATHB12 gene, showed a reduced sensitivity to ABA in root elongation assays, whereas transgenic Arabidopsis plants expressing ATHB12 and/orATHB7 as driven by the CaMV 35S promoter were hypersensitive in this response compared to wild-type. High-level expression of either gene also resulted in a delay in inflorescence stem elongation growth and caused plants to develop rosette leaves with a more rounded shape, shorter petioles, and increased branching of the inflorescence stem. Transgenic Arabidopsisplants expressing the reporter geneuidA under the control of the ATHB12promoter showed marker gene activity in axillary shoot primordia, lateral root primordia, inflorescence stems and in flower organs. Treatment of plants with ABA or water deficit conditions caused the activity of ATHB12to increase in the inflorescence stem, the flower organs and the leaves, and to expand into the vasculature of roots and the differentiation/elongation zone of root tips. Taken together, these results indicate that ATHB12 and ATHB7 act to mediate a growth response to water deficit by similar mechanisms.


Plant Molecular Biology | 2008

A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members

Adamantia Agalou; Sigit Purwantomo; Elin Övernäs; Henrik Johannesson; Xiaoyi Zhu; Amy Estiati; Rolf J. de Kam; Peter Engström; Inez H. Slamet-Loedin; Zhen Zhu; Mei Wang; Lizhong Xiong; Annemarie H. Meijer; Pieter B.F. Ouwerkerk

The homeodomain leucine zipper (HD-Zip) genes encode transcription factors that have diverse functions in plant development and have often been implicated in stress adaptation. The HD-Zip genes are the most abundant group of homeobox (HB) genes in plants and do not occur in other eukaryotes. This paper describes the complete annotation of the HD-Zip families I, II and III from rice and compares these gene families with Arabidopsis in a phylogeny reconstruction. Orthologous pairs of rice and Arabidopsis HD-Zip genes were predicted based on neighbour joining and maximum parsimony (MP) trees with support of conserved intron–exon organization. Additionally, a number of HD-Zip genes appeared to be unique to rice. Searching of EST and cDNA databases and expression analysis using RT-PCR showed that 30 out of 31 predicted rice HD-Zip genes are expressed. Most HD-Zip genes were broadly expressed in mature plants and seedlings, but others showed more organ specific patterns. Like in Arabidopsis and other dicots, a subset of the rice HD-Zip I and II genes was found to be regulated by drought stress. We identified both drought-induced and drought-repressed HD-Zip genes and demonstrate that these genes are differentially regulated in drought-sensitive versus drought-tolerant rice cultivars. The drought-repressed HD-Zip family I gene, Oshox4, was selected for promoter-GUS analysis, showing that drought-responsiveness of Oshox4 is controlled by the promoter and that Oshox4 expression is predominantly vascular-specific. Loss-of-function analysis of Oshox4 revealed no specific phenotype, but overexpression analysis suggested a role for Oshox4 in elongation and maturation processes.


Developmental Genetics | 1999

MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms.

Jens F. Sundström; Annelie Carlsbecker; Mats E. Svensson; Marie Svenson; Urban Johanson; Günter Theissen; Peter Engström

The reproductive organs of conifers, the pollen cones and seed cones, differ in morphology from the angiosperm flower in several fundamental respects. In this report we present evidence to suggest that the two plant groups, in spite of these morphological differences and the long evolutionary distance between them, share important features in regulating the development of the reproductive organs. We present the cloning of three genes, DAL11, DAL12, and DAL13, from Norway spruce, all of which are related to the angiosperm B-class of homeotic genes. The B-class genes determine the identities of petals and stamens. They are members of a family of MADS-box genes, which also includes C-class genes that act to determine the identity of carpels and, in concert with B genes specify stamens in the angiosperm flower. Phylogenetic analyses and the presence of B-class specific C-terminal motifs in the DAL protein sequences imply homology to the B-class genes. Specific expression of all three genes in developing pollen cones suggests that the genes are involved in one aspect of B function, the regulation of development of the pollen-bearing organs. The different temporal and spatial expression patterns of the three DAL genes in the developing pollen cones indicate that the genes have attained at least in part distinct functions. The DAL11, DAL12, and 13 expression patterns in the pollen cone partly overlap with that of the previously identified DAL2 gene, which is structurally and functionally related to the angiosperm C-class genes. This result supports the hypothesis that an interaction between B- and C-type genes is required for male organ development in conifers like in the angiosperms. Taken together, our data suggests that central components in the regulatory mechanisms for reproductive organ development are conserved between conifers and angiosperms and, thus, among all seed plants.


Scopus | 1995

Conifer homologues to genes that control floral development in angiosperms

Karolina Tandre; Victor A. Albert; Annika Sundås; Peter Engström

A set of MADS-box genes in flowering plants encode transcription factors that control both flower meristem formation and organ identity in the developing flower. In this report we present the first documentation of the presence of MADS-box genes in a non-flowering seed plant, and indeed from a plant bearing truly unisexual reproductive axes. A MADS-box-specific screening of a cDNA library from immature female strobili of the conifer Norway spruce, Picea abies (L.) Karst, resulted in cDNA clones that correspond to three different deficiens-agamous-like (dal) genes, dall, dal2 and dal3. In addition to the MADS box, the spruce genes contain a second sequence element conserved among angiosperm genes, the K box, which is located downstream to the MADS box. A phylogenetic analysis of the nucleotide sequences confirms common ancestry of the gene superfamily. dall is related to agl2, agl4 and agl6 from Arabidopsis thaliana, all genes with unknown functions, and is expressed in vegetative as well as reproductive shoots on the adult spruce tree. dal2 is sister to angiosperm genes that control the identity of sexual organs, and is expressed only in the developing male and female strobili. dal3 is related to the vegetatively expressed tomato gene tm3 and is transcribed in both vegetative and reproductive shoots. These results strongly suggest that the functional and structural complexity within the MADS-box superfamily of reproduction-control genes is an ancestral property of seed plants and not a novelty in the angiosperm lineage.


Plant Molecular Biology | 2003

The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings

Henrik Johannesson; Yan Wang; Johannes Hanson; Peter Engström

ATHB5 is a member of the homeodomain-leucine zipper (HDZip) transcription factor gene family of Arabidopsis thaliana. In this report we show that increased expression levels of ATHB5 in transgenic Arabidopsis plants cause an enhanced sensitivity to the inhibitory effect of abscisic acid (ABA) on seed germination and seedling growth. Consistent with this finding we demonstrate in northern blot experiments that the ABA-responsive gene RAB18 is hyperinduced by ABA in transgenic overexpressor lines as compared to the wild type. Northern blot and promoter-GUS fusion analyses show that ATHB5 gene transcription is initiated rapidly after the onset of germination and localized primarily to the hypocotyl of germinating seedlings. Moreover, analysis of ATHB5 gene expression during post-germinative growth in different ABA response mutants shows that ATHB5 gene activity is down-regulated in the abi1-1, abi3-1 and abi5-1 mutant lines, but not in abi2-1 or abi4-1. The identification of a T-DNA insertion mutant line of ATHB5 is described and no phenotypic alterations could be discerned, suggesting that ATHB5 may act redundantly with other HDZip genes. Taken together, these data suggest that ATHB5 is a positive regulator of ABA-responsiveness, mediating the inhibitory effect of ABA on growth during seedling establishment.


Plant Molecular Biology | 2001

Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13

Johannes Hanson; Henrik Johannesson; Peter Engström

ATHB13 is a new member of the homeodomain leucine zipper (HDZip) transcription factor family of Arabidopsis thaliana. Constitutive high-level expression of the ATHB13 cDNA in transgenic plants results in altered development of cotyledons and leaves, specifically in plants grown on media containing metabolizable sugars. Cotyledons and leaves of sugar-grown transgenic plants are more narrow and the junction between the petiole and the leaf blade less distinct, as compared to the wild type. High-level expression of ATHB13 affects cotyledon shape by inhibiting lateral expansion of epidermal cells in sugar-treated seedlings. Experiments with non-metabolizable sugars indicate that the alteration in leaf shape in the ATHB13 transgenics is mediated by sucrose sensing. ATHB13 further affects a subset of the gene expression responses of the wild-type plant to sugars. The expression of genes encoding β-amylase and vegetative storage protein is induced to higher levels in response to sucrose in the transgenic plants as compared to the wild type. The expression of other sugar-regulated genes examined is unaffected by ATHB13. These data suggest that ATHB13 may be a component of the sucrose-signalling pathway, active close to the targets of the signal transduction.


Plant Molecular Biology | 1992

A new homeobox-leucine zipper gene from Arabidopsis thaliana

Jim Mattsson; Eva Söderman; Marie Svenson; Chumpol Borkird; Peter Engström

We have isolated a homeobox-containing gene from Arabidopsis thaliana using a degenerate oligonucleotide probe corresponding to the most conserved region of the homeodomain. This strategy has been used previously to isolate homeobox-containing genes from Caenorhabditis, and recently from A. thaliana. The Arabidopsis genes have an unusual structure in that they have a leucine zipper motif adjacent to the carboxy terminal region of the homeo domain, a feature not found in homeobox-containing genes isolated from animals. We report the isolation and primary structure of a new member of this Arabidopsis homeobox-leucine zipper gene family. This new member has the homeodomain and leucine-zipper motif similar to the two genes previously identified, but differs from these genes in the part corresponding to the carboxy terminus of the polypeptide, as well as in size and isoelectric point of the protein.


Plant Molecular Biology | 2012

The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities

Ana Elisa Valdés; Elin Övernäs; Henrik Johansson; Alvaro Rada-Iglesias; Peter Engström

Plants perceiving drought activate multiple responses to improve survival, including large-scale alterations in gene expression. This article reports on the roles in the drought response of two Arabidopsis thaliana homeodomain-leucine zipper class I genes; ATHB7 and ATHB12, both strongly induced by water-deficit and abscisic acid (ABA). ABA-mediated transcriptional regulation of both genes is shown to depend on the activity of protein phosphatases type 2C (PP2C). ATHB7 and ATHB12 are, thus, targets of the ABA signalling mechanism defined by the PP2Cs and the PYR/PYL family of ABA receptors, with which the PP2C proteins interact. Our results from chromatin immunoprecipitation and gene expression analyses demonstrate that ATHB7 and ATHB12 act as positive transcriptional regulators of PP2C genes, and thereby as negative regulators of abscisic acid signalling. In support of this notion, our results also show that ATHB7 and ATHB12 act to repress the transcription of genes encoding the ABA receptors PYL5 and PYL8 in response to an ABA stimulus. In summary, we demonstrate that ATHB7 and ATHB12 have essential functions in the primary response to drought, as mediators of a negative feedback effect on ABA signalling in the plant response to water deficit.

Collaboration


Dive into the Peter Engström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge