Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter F. Davies is active.

Publication


Featured researches published by Peter F. Davies.


Journal of Neuropathology and Experimental Neurology | 2012

Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature

Peter T. Nelson; Irina Alafuzoff; Eileen H. Bigio; Constantin Bouras; Heiko Braak; Nigel J. Cairns; Rudolph J. Castellani; Barbara J. Crain; Peter F. Davies; Kelly Del Tredici; Charles Duyckaerts; Matthew P. Frosch; Vahram Haroutunian; Patrick R. Hof; Christine M. Hulette; Bradley T. Hyman; Takeshi Iwatsubo; Kurt A. Jellinger; Gregory A. Jicha; Eniko Veronika Kovari; Walter A. Kukull; James B. Leverenz; Seth Love; Ian R. Mackenzie; David Mann; Eliezer Masliah; Ann C. McKee; Thomas J. Montine; John C. Morris; Julie A. Schneider

Abstract Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. &bgr;-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective forunderstanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of A&bgr; plaques and neurofibrillary tangles. Although A&bgr; plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.


Nature Reviews Cardiology | 2009

Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology

Peter F. Davies

Endothelium lining the cardiovascular system is highly sensitive to hemodynamic shear stresses that act at the vessel luminal surface in the direction of blood flow. Physiological variations of shear stress regulate acute changes in vascular diameter and when sustained induce slow, adaptive, structural-wall remodeling. Both processes are endothelium-dependent and are systemically and regionally compromised by hyperlipidemia, hypertension, diabetes and inflammatory disorders. Shear stress spans a range of spatiotemporal scales and contributes to regional and focal heterogeneity of endothelial gene expression, which is important in vascular pathology. Regions of flow disturbances near arterial branches, bifurcations and curvatures result in complex spatiotemporal shear stresses and their characteristics can predict atherosclerosis susceptibility. Changes in local artery geometry during atherogenesis further modify shear stress characteristics at the endothelium. Intravascular devices can also influence flow-mediated endothelial responses. Endothelial flow-induced responses include a cell-signaling repertoire, collectively known as mechanotransduction, that ranges from instantaneous ion fluxes and biochemical pathways to gene and protein expression. A spatially decentralized mechanism of endothelial mechanotransduction is dominant, in which deformation at the cell surface induced by shear stress is transmitted as cytoskeletal tension changes to sites that are mechanically coupled to the cytoskeleton. A single shear stress mechanotransducer is unlikely to exist; rather, mechanotransduction occurs at multiple subcellular locations.


Circulation Research | 1993

Mechanical stress mechanisms and the cell. An endothelial paradigm.

Peter F. Davies; S C Tripathi

There are important physiological and pathological cardiovascular consequences related to endothelial biomechanical properties. The endothelium, however, is not unique in responding to external forces; virtually all cells accommodate or respond to the mechanical environment.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1992

Vascular endothelium responds to fluid shear stress gradients.

Natacha DePaola; Michael A. Gimbrone; Peter F. Davies; C.F. Dewey

In vitro investigations of the responses of vascular endothelium to fluid shear stress have typically been conducted under conditions where the time-mean shear stress is uniform. In contrast, the in vitro experiments reported here have re-created the large gradients in surface fluid shear stress found near arterial branches in vivo; specifically, we have produced a disturbed-flow region that includes both flow separation and reattachment. Near reattachment regions, shear stress is small but its gradient is large. Cells migrate away from this region, predominantly in the downstream direction. Those that remain divide at a rate that is high compared with that of cells subjected to uniform shear. We speculate that large shear stress gradients can induce morphological and functional changes in the endothelium in regions of disturbed flow in vivo and thus may contribute to the formation of atherosclerotic lesions.


Journal of Clinical Investigation | 1984

Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.

Peter F. Davies; C.F. Dewey; S. R. Bussolari; E J Gordon; Michael A. Gimbrone

The relationships between fluid shear stress, a physiologically relevant mechanical force in the circulatory system, and pinocytosis (fluid-phase endocytosis) were investigated in cultured bovine aortic endothelial cells using a specially designed apparatus. Continuous exposure to steady shear stresses (1-15 dyn/cm2) in laminar flow stimulated time- and amplitude-dependent increases in pinocytotic rate which returned to control levels after several hours. After 48 h continuous exposure to steady shear stress, removal to static conditions also resulted in a transient increase in pinocytotic rate, suggesting that temporal fluctuations in shear stress may influence endothelial cell function. Endothelial pinocytotic rates remained constant during exposure to rapidly oscillating shear stress at near physiological frequency (1 Hz) in laminar flow. In contrast, however, a sustained elevation of pinocytotic rate occurred when cells were subjected to fluctuations in shear stress amplitude (3-13 dyn/cm2) of longer cycle time (15 min), suggesting that changes in blood flow of slower periodicity may influence pinocytotic vesicle formation. As determined by [3H]thymidine autoradiography, neither steady nor oscillating shear stress stimulated the proliferation of confluent endothelial cells. These observations indicate that: (a) alterations in fluid shear stress can significantly influence the rate of formation of pinocytotic vesicles in vascular endothelial cells, (b) this process is force- and time-dependent and shows accommodation, (c) certain patterns of fluctuation in shear stress result in sustained elevation of pinocytotic rate, and (d) shear stresses can modulate endothelial pinocytosis independent of growth stimulation. These findings are relevant to (i) transendothelial transport and the metabolism of macromolecules in normal endothelium and (ii) the role of hemodynamic factors in the localization of atherosclerotic lesions in vivo.


Circulation Research | 1994

Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy.

Kenneth A. Barbee; Peter F. Davies; Ratnesh Lal

We report the first topographical data of the surface of living endothelial cells at sub-light-microscopic resolution, measurements essential for a detailed understanding of force distribution in the endothelium subjected to flow. Atomic force microscopy was used to observe the surface topography of living endothelial cells in confluent monolayers maintained in static culture or subjected to unidirectional shear stress in laminar flow (12 dyne/cm2 for 24 hours). The surface of polygonal unsheared cells was smooth, with mean excursion of surface undulation between peak height (over the nucleus) and minima (at intercellular junctions) of 3.4 +/- 0.7 microns (mean +/- SD); the mean height to length ratio was 0.11 +/- 0.02. In cells that were aligned in the direction of flow after a 24-hour exposure to laminar shear stress, height differentials were significantly reduced (mean, 1.8 +/- 0.5 micron), and the mean height to length ratio was 0.045 +/- 0.009. Calculation of maximum shear stress and maximum gradient of shear stress (delta tau/delta x, where tau is shear stress at the cell surface) at constant flow velocity revealed substantial streamling of aligned cells that reduced delta tau/delta x by more than 50% at a nominal shear stress of 10 dyne/cm2. Aligned cells exhibited ridges extending in the direction of flow that represented imprints of submembranous F-actin stress-fiber bundles mechanically coupled to the cell membrane. The surface ridges, approximately 50 nm in height and 200 to 1000 nm in width, were particularly prominent in the periphery of the aligned cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Proceedings of the National Academy of Sciences of the United States of America | 2010

MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro

Yun Fang; Congzhu Shi; Elisabetta Manduchi; Mete Civelek; Peter F. Davies

A chronic proinflammatory state precedes pathological change in arterial endothelial cells located within regions of susceptibility to atherosclerosis. The potential contributions of regulatory microRNAs to this disequilibrium were investigated by artery site-specific profiling in normal adult swine. Expression of endothelial microRNA10a (miR-10a) was lower in the athero-susceptible regions of the inner aortic arch and aorto-renal branches than elsewhere. Expression of Homeobox A1 (HOXA1), a known miR-10a target, was up-regulated in the same locations. Endothelial transcriptome microarray analysis of miR-10a knockdown in cultured human aortic endothelial cells (HAEC) identified IκB/NF-κB–mediated inflammation as the top category of up-regulated biological processes. Phosphorylation of IκBα, a prerequisite for IκBα proteolysis and NF-κB activation, was significantly up-regulated in miR-10a knockdown HAEC and was accompanied by increased nuclear expression of NF-κB p65. The inflammatory biomarkers monocyte chemotactic protein 1 (MCP-1), IL-6, IL-8, vascular cell adhesion molecule 1 (VCAM-1), and E-selectin were elevated following miR-10a knockdown. Conversely, knockin of miR-10a (a conservative 25-fold increase) inhibited the basal expression of VCAM-1 and E-selectin in HAEC. Two key regulators of IκBα degradation—mitogen-activated kinase kinase kinase 7 (MAP3K7; TAK1) and β-transducin repeat-containing gene (βTRC)—contain a highly conserved miR-10a binding site in the 3′ UTR. Both molecules were up-regulated by miR-10a knockdown and suppressed by miR-10a knockin, and evidence of direct miR-10a binding to the 3′ UTR was demonstrated by luciferase assay. Comparative expression studies of endothelium located in athero-susceptible aortic arch and athero-protected descending thoracic aorta identified significantly up-regulated MAP3K7, βTRC, phopho-IκBα, and nuclear p65 expression suggesting that the differential expression of miR-10a contributes to the regulation of proinflammatory endothelial phenotypes in athero-susceptible regions in vivo.


Journal of Clinical Investigation | 1994

Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces.

Peter F. Davies; Andre Robotewskyj; Melvin L. Griem

Focal adhesion sites were observed in cultured endothelial cells by tandem scanning confocal microscopy and digitized image analysis, techniques that provide real-time images of adhesion site area and topography in living cells. Image subtraction demonstrated that in the presence of unidirectional steady laminar flow (shear stress [tau] = 10 dyn/cm2) a substantial fraction of focal adhesion sites remodeled in the direction of flow. In contrast, focal adhesions of control (no flow) cells remodeled without preferred direction. In confluent monolayers subjected to shear stresses of 10 dyn/cm2, cells began to realign in the direction of flow after 7-9 h. This was accompanied by redistribution of intracellular stress fibers, alignment of individual focal adhesion sites, and the coalescence of smaller sites resulting in fewer, but larger, focal adhesions per cell. Cell adhesion, repeatedly calculated in the same cells as a function of the areas of focal contact and the separation distances between membrane and substratum, varied by < 10% during both short (30 min), or prolonged (< or = 24 h), periods of exposure to flow. Consistent with these measurements, the gains and losses of focal adhesion area as each site remodeled were approximately equivalent. When the glass substratum was coated with gelatin, rates of remodeling were inhibited by 47% during flow (tau = 10 dyn/cm2). These studies: (a) reveal the dynamic nature of focal adhesion; (b) demonstrate that these sites at the ablumenal endothelial membrane are both acutely and chronically responsive to frictional shear stress forces applied to the opposite (lumenal) cell surface; and (c) suggest that components of the focal adhesion complex may be mechanically responsive elements coupled to the cytoskeleton.


Circulation Research | 1989

N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.

Jonathan S. Stamler; Michael E. Mendelsohn; P Amarante; D Smick; N Andon; Peter F. Davies; John P. Cooke; J. Loscalzo

Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.


Circulation Research | 2005

Spatial Heterogeneity of Endothelial Phenotypes Correlates With Side-Specific Vulnerability to Calcification in Normal Porcine Aortic Valves

Craig A. Simmons; Gregory R. Grant; Elisabetta Manduchi; Peter F. Davies

Calcific aortic valve sclerosis involves inflammatory processes and occurs preferentially on the aortic side of endothelialized valve leaflets. Although the endothelium is recognized to play critical roles in focal vascular sclerosis, the contributions of valvular endothelial phenotypes to aortic valve sclerosis and side-specific susceptibility to calcification are poorly understood. Using RNA amplification and cDNA microarrays, we identified 584 genes as differentially expressed in situ by the endothelium on the aortic side versus ventricular side of normal adult pig aortic valves. These differential transcriptional profiles, representative of the steady state in vivo, identify globally distinct endothelial phenotypes on opposite sides of the aortic valve. Several over-represented biological classifications with putative relevance to endothelial regulation of valvular homeostasis and aortic-side vulnerability to calcification were identified among the differentially expressed genes. Of note, multiple inhibitors of cardiovascular calcification were significantly less expressed by endothelium on the disease-prone aortic side of the valve, suggesting side-specific permissiveness to calcification. However, coexisting putative protective mechanisms were also expressed. Specifically, enhanced antioxidative gene expression and the lack of differential expression of proinflammatory molecules on the aortic side may protect against inflammation and lesion initiation in the normal valve. These data implicate the endothelium in regulating valvular calcification and suggest that spatial heterogeneity of valvular endothelial phenotypes may contribute to the focal susceptibility for lesion development.

Collaboration


Dive into the Peter F. Davies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian P. Helmke

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Congzhu Shi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Zhou Jiang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Gregory R. Grant

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Juan M. Jiménez

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

William F. Pritchard

Food and Drug Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge