Peter F. Hallin
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter F. Hallin.
Nucleic Acids Research | 2007
Karin Lagesen; Peter F. Hallin; Einar Andreas Rødland; Hans-Henrik Stærfeldt; Torbjørn Rognes; David W. Ussery
The publication of a complete genome sequence is usually accompanied by annotations of its genes. In contrast to protein coding genes, genes for ribosomal RNA (rRNA) are often poorly or inconsistently annotated. This makes comparative studies based on rRNA genes difficult. We have therefore created computational predictors for the major rRNA species from all kingdoms of life and compiled them into a program called RNAmmer. The program uses hidden Markov models trained on data from the 5S ribosomal RNA database and the European ribosomal RNA database project. A pre-screening step makes the method fast with little loss of sensitivity, enabling the analysis of a complete bacterial genome in less than a minute. Results from running RNAmmer on a large set of genomes indicate that the location of rRNAs can be predicted with a very high level of accuracy. Novel, unannotated rRNAs are also predicted in many genomes. The software as well as the genome analysis results are available at the CBS web server.
Bioinformatics | 2004
Peter F. Hallin; David W. Ussery
UNLABELLED Currently, new bacterial genomes are being published on a monthly basis. With the growing amount of genome sequence data, there is a demand for a flexible and easy-to-maintain structure for storing sequence data and results from bioinformatic analysis. More than 150 sequenced bacterial genomes are now available, and comparisons of properties for taxonomically similar organisms are not readily available to many biologists. In addition to the most basic information, such as AT content, chromosome length, tRNA count and rRNA count, a large number of more complex calculations are needed to perform detailed comparative genomics. DNA structural calculations like curvature and stacking energy, DNA compositions like base skews, oligo skews and repeats at the local and global level are just a few of the analysis that are presented on the CBS Genome Atlas Web page. Complex analysis, changing methods and frequent addition of new models are factors that require a dynamic database layout. Using basic tools like the GNU Make system, csh, Perl and MySQL, we have created a flexible database environment for storing and maintaining such results for a collection of complete microbial genomes. Currently, these results counts to more than 220 pieces of information. The backbone of this solution consists of a program package written in Perl, which enables administrators to synchronize and update the database content. The MySQL database has been connected to the CBS web-server via PHP4, to present a dynamic web content for users outside the center. This solution is tightly fitted to existing server infrastructure and the solutions proposed here can perhaps serve as a template for other research groups to solve database issues. AVAILABILITY A web based user interface which is dynamically linked to the Genome Atlas Database can be accessed via www.cbs.dtu.dk/services/GenomeAtlas/. SUPPLEMENTARY INFORMATION This paper has a supplemental information page which links to the examples presented: www.cbs.dtu.dk/services/GenomeAtlas/suppl/bioinfdatabase.
PLOS ONE | 2010
Carsten Friis; Trudy M. Wassenaar; Muhammad Afzal Javed; Lars Snipen; Karin Lagesen; Peter F. Hallin; Diane G. Newell; Monique Toszeghy; Anne J. Ridley; Georgina Manning; David W. Ussery
Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1.
Molecular Biology and Evolution | 2010
Estelle Crozat; Cynthia L. Winkworth; Joël Gaffé; Peter F. Hallin; Margaret A. Riley; Richard E. Lenski; Dominique Schneider
DNA supercoiling is the master function that interconnects chromosome structure and global gene transcription. This function has recently been shown to be under strong selection in Escherichia coli. During the evolution of 12 initially identical populations propagated in a defined environment for 20,000 generations, parallel increases in DNA supercoiling were observed in ten populations. The genetic changes associated with the increased supercoiling were examined in one population, and beneficial mutations in the genes topA (encoding topoisomerase I) and fis (encoding a histone-like protein) were identified. To elucidate the molecular basis and impact of these changes, we quantified the level of genetic, phenotypic, and molecular parallelism linked to DNA supercoiling in all 12 evolving populations. First, sequence determination of DNA topology-related loci revealed strong genetic parallelism, with mutations concentrated in three genes (topA, fis, and dusB), although the populations had different alleles at each locus. Statistical analyses of these polymorphisms implied the action of positive selection and, moreover, suggested that fis and dusB, which belong to the same operon, have related functions. Indeed, we demonstrated that DusB regulates the expression of fis by both experimental and phylogenetic analyses. Second, molecular analyses of five mutations in fis and dusB affecting the transcription, translation, and protein activity of Fis also revealed strong parallelism in the resulting phenotypic effects. Third, artificially increasing DNA supercoiling in one of the two populations that lacked DNA topology changes led to a significant fitness increase. The high levels of molecular and genetic parallelism, targeting a small subset of the many genes involved in DNA supercoiling, indicate that changes in DNA superhelicity have been important in the evolution of these populations. Surprisingly, however, most of the evolved alleles we tested had either no detectable or slightly deleterious effects on fitness, despite these signatures of positive selection.
Microbial Ecology | 2010
Tammi Camilla Vesth; Trudy M. Wassenaar; Peter F. Hallin; Lars Snipen; Karin Lagesen; David W. Ussery
Thirty-two genome sequences of various Vibrionaceae members are compared, with emphasis on what makes V. cholerae unique. As few as 1,000 gene families are conserved across all the Vibrionaceae genomes analysed; this fraction roughly doubles for gene families conserved within the species V. cholerae. Of these, approximately 200 gene families that cluster on various locations of the genome are not found in other sequenced Vibrionaceae; these are possibly unique to the V. cholerae species. By comparing gene family content of the analysed genomes, the relatedness to a particular species is identified for two unspeciated genomes. Conversely, two genomes presumably belonging to the same species have suspiciously dissimilar gene family content. We are able to identify a number of genes that are conserved in, and unique to, V. cholerae. Some of these genes may be crucial to the niche adaptation of this species.
Standards in Genomic Sciences | 2009
Peter F. Hallin; Hans-Henrik Stærfeldt; Eva Rotenberg; Tim T. Binnewies; Craig J. Benham; David W. Ussery
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.
international conference on bioinformatics | 2012
Dan B. Jensen; Tammi Camilla Vesth; Peter F. Hallin; Anders Gorm Pedersen; David W. Ussery
BackgroundThe preferred habitat of a given bacterium can provide a hint of which types of enzymes of potential industrial interest it might produce. These might include enzymes that are stable and active at very high or very low temperatures. Being able to accurately predict this based on a genomic sequence, would thus allow for an efficient and targeted search for production organisms, reducing the need for culturing experiments.ResultsThis study found a total of 40 protein families useful for distinction between three thermophilicity classes (thermophiles, mesophiles and psychrophiles). The predictive performance of these protein families were compared to those of 87 basic sequence features (relative use of amino acids and codons, genomic and 16S rDNA AT content and genome size). When using naïve Bayesian inference, it was possible to correctly predict the optimal temperature range with a Matthews correlation coefficient of up to 0.68. The best predictive performance was always achieved by including protein families as well as structural features, compared to either of these alone. A dedicated computer program was created to perform these predictions.ConclusionsThis study shows that protein families associated with specific thermophilicity classes can provide effective input data for thermophilicity prediction, and that the naïve Bayesian approach is effective for such a task. The program created for this study is able to efficiently distinguish between thermophilic, mesophilic and psychrophilic adapted bacterial genomes.
Genome Announcements | 2015
Jeanette E. Lylloff; Lea Benedicte Skov Hansen; Morten Jepsen; Peter F. Hallin; Søren J. Sørensen; Peter Stougaard; Mikkel A. Glaring
ABSTRACT Arsukibacterium ikkense GCM72T and a close relative, Arsukibacterium sp. MJ3, were isolated from two cold and alkaline environments as producers of extracellular proteolytic enzymes active at high pH and low temperature. This report describes the two draft genome sequences, which may serve as sources of future industrial enzymes.
Genome Announcements | 2013
Aviaja Zenia Edna Lyberth Hauptmann; Mikkel A. Glaring; Peter F. Hallin; Anders Priemé; Peter Stougaard
ABSTRACT Rhodonellum psychrophilum GCM71T, isolated from the cold and alkaline submarine ikaite columns in the Ikka Fjord in Greenland, displays optimal growth at 5 to 10°C and pH 10. Here, we report the draft genome sequence of this strain, which may provide insight into the mechanisms of adaptation to these extreme conditions.
Archive | 2008
Michael L. Tress; Rita Casadio; Alejandro Giorgetti; Peter F. Hallin; Agnieszka Sierakowska Juncker; Eleonora Kulberkyte; Pier Luigi Martelli; Domenico Raimondo; Gabrielle A. Reeves; Janet M. Thornton; Anna Tramontano; Kai Wang; J.J. Wesselink; Alfonso Valencia
In eukaryotic cells transcribed precursor messenger RNA (mRNA) contains introns and exons. Precursor mRNA is converted into mature mRNA by removal of introns and the splicing together of the remaining exons by the spliceosome. Alternative splicing is the process whereby the splicing process can generate a diverse range of mature RNA transcripts from different combinations of exons and allows the cell to generate a series of distinct protein isoforms. Alternative splicing events that occur within exons that are protein coding are likely to alter the structure and biological function of the expressed protein isoform and may even create new protein functions. This has lead to suggestions that alternative splicing has the potential to expand the cellular protein repertoire (Lopez 1998; Black 2000; Modrek and Lee 2002).