Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter F. Stadler is active.

Publication


Featured researches published by Peter F. Stadler.


Monatshefte Fur Chemie | 1994

Fast folding and comparison of RNA secondary structures

Ivo L. Hofacker; Walter Fontana; Peter F. Stadler; L. S. Bonhoeffer; Manfred Tacker; Peter Schuster

SummaryComputer codes for computation and comparison of RNA secondary structures, the Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim at predictions of structures with minimum free energies as well as at computations of the equilibrium partition functions and base pairing probabilities.An efficient heuristic for the inverse folding problem of RNA is introduced. In addition we present compact and efficient programs for the comparison of RNA secondary structures based on tree editing and alignment.All computer codes are written in ANSI C. They include implementations of modified algorithms on parallel computers with distributed memory. Performance analysis carried out on an Intel Hypercube shows that parallel computing becomes gradually more and more efficient the longer the sequences are.ZusammenfassungDie im Vienna RNA package enthaltenen Computer Programme für die Berechnung und den Vergleich von RNA Sekundärstrukturen werden präsentiert. Ihren Kern bilden Algorithmen zur Vorhersage von Strukturen minimaler Energie sowie zur Berechnung von Zustandssumme und Basenpaarungswahrscheinlichkeiten mittels dynamischer Programmierung.Ein effizienter heuristischer Algorithmus für das inverse Faltungsproblem wird vorgestellt. Darüberhinaus präsentieren wir kompakte und effiziente Programme zum Vergleich von RNA Sekundärstrukturen durch Baum-Editierung und Alignierung.Alle Programme sind in ANSI C geschrieben, darunter auch eine Implementation des Faltungs-algorithmus für Parallelrechner mit verteiltem Speicher. Wie Tests auf einem Intel Hypercube zeigen, wird das Parallelrechnen umso effizienter je länger die Sequenzen sind.


Science | 2007

RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription

Philipp Kapranov; Jill Cheng; Sujit Dike; David A. Nix; Radharani Duttagupta; Aarron T. Willingham; Peter F. Stadler; Jana Hertel; Jörg Hackermüller; Ivo L. Hofacker; Ian Bell; Evelyn Cheung; Jorg Drenkow; Erica Dumais; Sandeep Patel; Gregg A. Helt; Madhavan Ganesh; Srinka Ghosh; Antonio Piccolboni; Victor Sementchenko; Hari Tammana; Thomas R. Gingeras

Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.


Algorithms for Molecular Biology | 2011

ViennaRNA Package 2.0

Ronny Lorenz; Stephan H. Bernhart; Christian Höner zu Siederdissen; Hakim Tafer; Christoph Flamm; Peter F. Stadler; Ivo L. Hofacker

BackgroundSecondary structure forms an important intermediate level of description of nucleic acids that encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as thermodynamic properties.ResultsThe ViennaRNA Package has been a widely used compilation of RNA secondary structure related computer programs for nearly two decades. Major changes in the structure of the standard energy model, the Turner 2004 parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants prompted a major technical overhaul of both the underlying RNAlib and the interactive user programs. New features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of structures, additional output information such as centroid structures and maximum expected accuracy structures derived from base pairing probabilities, or z-scores for locally stable secondary structures, and support for input in fasta format. Updates were implemented without compromising the computational efficiency of the core algorithms and ensuring compatibility with earlier versions.ConclusionsThe ViennaRNA Package 2.0, supporting concurrent computations via OpenMP, can be downloaded from http://www.tbi.univie.ac.at/RNA.


Molecular Phylogenetics and Evolution | 2013

MITOS: improved de novo metazoan mitochondrial genome annotation.

Matthias Bernt; Alexander Donath; Frank Jühling; Fabian Externbrink; Catherine Florentz; Guido Fritzsch; Joern Pütz; Martin Middendorf; Peter F. Stadler

About 2000 completely sequenced mitochondrial genomes are available from the NCBI RefSeq data base together with manually curated annotations of their protein-coding genes, rRNAs, and tRNAs. This annotation information, which has accumulated over two decades, has been obtained with a diverse set of computational tools and annotation strategies. Despite all efforts of manual curation it is still plagued by misassignments of reading directions, erroneous gene names, and missing as well as false positive annotations in particular for the RNA genes. Taken together, this causes substantial problems for fully automatic pipelines that aim to use these data comprehensively for studies of animal phylogenetics and the molecular evolution of mitogenomes. The MITOS pipeline is designed to compute a consistent de novo annotation of the mitogenomic sequences. We show that the results of MITOS match RefSeq and MitoZoa in terms of annotation coverage and quality. At the same time we avoid biases, inconsistencies of nomenclature, and typos originating from manual curation strategies. The MITOS pipeline is accessible online at http://mitos.bioinf.uni-leipzig.de.


Nature | 2010

The primary transcriptome of the major human pathogen Helicobacter pylori

Cynthia M. Sharma; Steve Hoffmann; Fabien Darfeuille; Jérémy Reignier; Sven Findeiß; Alexandra Sittka; Sandrine Chabas; Kristin Reiche; Jörg Hackermüller; Richard Reinhardt; Peter F. Stadler; Jörg Vogel

Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5′ end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of ∼60 small RNAs including the ε-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.


Proceedings of the Royal Society of London B: Biological Sciences | 1994

From sequences to shapes and back: a case study in RNA secondary structures

Peter Schuster; Walter Fontana; Peter F. Stadler; Ivo L. Hofacker

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones. By using an algorithm for inverse folding, we show that sequences sharing the same structure are distributed randomly over sequence space. All common structures can be accessed from an arbitrary sequence by a number of mutations much smaller than the chain length. The sequence space is percolated by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications for evolutionary adaptation and for applied molecular evolution are evident: finding a particular structure by mutation and selection is much simpler than expected and, even if catalytic activity should turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.


Journal of Molecular Biology | 2002

Secondary structure prediction for aligned RNA sequences.

Ivo L. Hofacker; Martin Fekete; Peter F. Stadler

Most functional RNA molecules have characteristic secondary structures that are highly conserved in evolution. Here we present a method for computing the consensus structure of a set aligned RNA sequences taking into account both thermodynamic stability and sequence covariation. Comparison with phylogenetic structures of rRNAs shows that a reliability of prediction of more than 80% is achieved for only five related sequences. As an application we show that the Early Noduline mRNA contains significant secondary structure that is supported by sequence covariation.


Nucleic Acids Research | 2009

tRNAdb 2009: compilation of tRNA sequences and tRNA genes

Frank Jühling; Mario Mörl; Roland K. Hartmann; Mathias Sprinzl; Peter F. Stadler; Joern Pütz

One of the first specialized collections of nucleic acid sequences in life sciences was the ‘compilation of tRNA sequences and sequences of tRNA genes’ (http://www.trna.uni-bayreuth.de). Here, an updated and completely restructured version of this compilation is presented (http://trnadb.bioinf.uni-leipzig.de). The new database, tRNAdb, is hosted and maintained in cooperation between the universities of Leipzig, Marburg, and Strasbourg. Reimplemented as a relational database, tRNAdb will be updated periodically and is searchable in a highly flexible and user-friendly way. Currently, it contains more than 12 000 tRNA genes, classified into families according to amino acid specificity. Furthermore, the implementation of the NCBI taxonomy tree facilitates phylogeny-related queries. The database provides various services including graphical representations of tRNA secondary structures, a customizable output of aligned or un-aligned sequences with a variety of individual and combinable search criteria, as well as the construction of consensus sequences for any selected set of tRNAs.


PLOS Computational Biology | 2005

Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering

Sebastian Will; Kristin Reiche; Ivo L. Hofacker; Peter F. Stadler; Rolf Backofen

The RFAM database defines families of ncRNAs by means of sequence similarities that are sufficient to establish homology. In some cases, such as microRNAs and box H/ACA snoRNAs, functional commonalities define classes of RNAs that are characterized by structural similarities, and typically consist of multiple RNA families. Recent advances in high-throughput transcriptomics and comparative genomics have produced very large sets of putative noncoding RNAs and regulatory RNA signals. For many of them, evidence for stabilizing selection acting on their secondary structures has been derived, and at least approximate models of their structures have been computed. The overwhelming majority of these hypothetical RNAs cannot be assigned to established families or classes. We present here a structure-based clustering approach that is capable of extracting putative RNA classes from genome-wide surveys for structured RNAs. The LocARNA (local alignment of RNA) tool implements a novel variant of the Sankoff algorithm that is sufficiently fast to deal with several thousand candidate sequences. The method is also robust against false positive predictions, i.e., a contamination of the input data with unstructured or nonconserved sequences. We have successfully tested the LocARNA-based clustering approach on the sequences of the RFAM-seed alignments. Furthermore, we have applied it to a previously published set of 3,332 predicted structured elements in the Ciona intestinalis genome (Missal K, Rose D, Stadler PF (2005) Noncoding RNAs in Ciona intestinalis. Bioinformatics 21 (Supplement 2): i77–i78). In addition to recovering, e.g., tRNAs as a structure-based class, the method identifies several RNA families, including microRNA and snoRNA candidates, and suggests several novel classes of ncRNAs for which to date no representative has been experimentally characterized.


Nature | 2013

The African coelacanth genome provides insights into tetrapod evolution.

Chris T. Amemiya; Jessica Alföldi; Alison P. Lee; Shaohua Fan; Hervé Philippe; Iain MacCallum; Ingo Braasch; Tereza Manousaki; Igor Schneider; Nicolas Rohner; Chris Organ; Domitille Chalopin; Jeramiah J. Smith; Mark Robinson; Rosemary A. Dorrington; Marco Gerdol; Bronwen Aken; Maria Assunta Biscotti; Marco Barucca; Denis Baurain; Aaron M. Berlin; Francesco Buonocore; Thorsten Burmester; Michael S. Campbell; Adriana Canapa; John P. Cannon; Alan Christoffels; Gianluca De Moro; Adrienne L. Edkins; Lin Fan

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

Collaboration


Dive into the Peter F. Stadler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Hellmuth

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge