Peter Funch
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Funch.
Nature Communications | 2014
Kristian W. Sanggaard; Jesper Bechsgaard; Xiaodong Fang; Jinjie Duan; Thomas F. Dyrlund; Vikas Gupta; Xuanting Jiang; Ling Cheng; Dingding Fan; Yue Feng; Lijuan Han; Zhiyong Huang; Zongze Wu; Li Liao; Virginia Settepani; Ida B. Thøgersen; Bram Vanthournout; Tobias Wang; Yabing Zhu; Peter Funch; Jan J. Enghild; Leif Schauser; Stig U. Andersen; Palle Villesen; Mikkel H. Schierup; Trine Bilde; Jun Wang
Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.
Journal of Morphology | 2000
Reinhardt Møbjerg Kristensen; Peter Funch
A new microscopic aschelminth‐like animal, Limnognathia maerski nov. gen. et sp., is described from a cold spring at Disko Island, West Greenland, and assigned to Micrognathozoa nov. class. It has a complex of jaws in its pharynx, and the ultrastructure of the main jaws is similar to that of the jaws of advanced scleroperalian gnathostomulids. However, other jaw elements appear also to have characteristics of the trophi of Rotifera. Jaw‐like structures are found in other protostome taxa as well—for instance, in proboscises of kalyptorhynch platyhelminths, in dorvilleid polychaetes and aplacophoran mollusks—but studies of their ultrastructure show that none of these jaws is homologous with jaws found in Gnathostomulida, Rotifera, and Micrognathozoa. The latter three groups have recently been joined into the monophylum Gnathifera Ahlrichs, 1995, an interpretation supported by the presence of jaw elements with cuticular rods with osmiophilic cores in all three groups. Such tubular structures are found in the fulcrum of all Rotifera and in several cuticular sclerites of both Gnathostomulida and Micrognathozoa. The gross morphology of the pharyngeal apparatus is similar in the three groups. It consists of a ventral pharyngeal bulb and a dorsal pharyngeal lumen. The absence of pharyngeal ciliation cannot be used as an autapomorphy in the ground pattern of the Gnathifera because the Micrognathozoa has the plesiomorphic alternative with a ciliated pharyngeal epithelium.
Cladistics | 2004
Gonzalo Giribet; Martin V. Sørensen; Peter Funch; Reinhardt Møbjerg Kristensen; Wolfgang Sterrer
Micrognathozoa is the most recently discovered higher metazoan lineage. The sole known species of the group, Limnognathia maerski, was originally reported from running freshwater in Disko Island (Greenland), and has recently been recorded from the subantarctic region. Because of the presence of a particular type of jaws formed of special cuticularized rods, similar to those of gnathostomulids and rotifers, the three metazoan lineages were considered closely related, and assigned to the clade Gnathifera. A phylogenetic comparison of four molecular loci for Limnognathia maerski and other newly generated sequences of mainly acoelomate animals showed that Micrognathozoa may constitute an independent lineage from those of Gnathostomulida and Rotifera. However, the exact position of Micrognathozoa could not be determined due to the lack of support for any given relationships and due to the lack of stability in the position of Limnognathia maerski under analysis of different loci and of different parameter sets for sequence comparison. Nuclear loci tend to place Micrognathozoa with the syndermatan/cycliophoran taxa, but the addition of the mitochondrial gene cytochrome c oxidase subunit I favors a relationship of Micrognathozoa to Entoprocta.
BMC Biology | 2017
Evelyn E. Schwager; Prashant P. Sharma; Thomas H. Clarke; Daniel J. Leite; Torsten Wierschin; Matthias Pechmann; Yasuko Akiyama-Oda; Lauren Esposito; Jesper Bechsgaard; Trine Bilde; Alexandra D. Buffry; Hsu Chao; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Cornelius Eibner; Cassandra G. Extavour; Peter Funch; Jessica E. Garb; Luis B. Gonzalez; Vanessa L. González; Sam Griffiths-Jones; Yi Han; Cheryl Y. Hayashi; Maarten Hilbrant; Daniel S.T. Hughes; Ralf Janssen; Sandra L. Lee; Ignacio Maeso; Shwetha C. Murali
BackgroundThe duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum.ResultsWe found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication.ConclusionsOur results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
Development Genes and Evolution | 2012
Carolin Haug; Peter Van Roy; Angelika Leipner; Peter Funch; David M. Rudkin; Lothar Schöllmann; Joachim T. Haug
Specimens of Euproops sp. (Xiphosura, Chelicerata) from the Carboniferous Piesberg quarry near Osnabrück, Germany, represent a relatively complete growth series of 10 stages. Based on this growth sequence, morphological changes throughout the ontogeny can be identified. The major change affects the shape of the epimera of the opisthosoma. In earlier stages, they appear very spine-like, whereas in later stages the bases of these spine-like structures become broader; the broadened bases are then successively drawn out distally. In the most mature stage known, the epimera are of trapezoidal shape and approach each other closely to form a complete flange around the thoracetron (=fused tergites of the opisthosoma). These ontogenetic changes question the taxonomic status of different species of Euproops, as the latter appear to correspond to different stages of the ontogenetic series reconstructed from the Piesberg specimens. This means that supposed separate species could, in fact, represent different growth stages of a single species. It could alternatively indicate that heterochrony (=evolutionary change of developmental timing) plays an important role in the evolution of Xiphosura. We propose a holomorph approach, i.e., reconstructing ontogenetic sequences for fossil and extant species as a sound basis for a taxonomic, phylogenetic, and evolutionary discussion of Xiphosura.
Molecular Ecology | 2005
Matthias Obst; Peter Funch; Gonzalo Giribet
In order to elucidate the evolutionary history and the population structure of the members of the phylum Cycliophora, which live commensally on three species of lobsters, we studied sequence variation in the mitochondrial gene cyctochrome c oxidase subunit I. Overall 242 sequences from 16 locations on both coasts of the North Atlantic, including the North Sea and the Mediterranean, were analysed, revealing 28 haplotypes, with a maximum sequence divergence of 16.6%. Total genetic diversity was high (h = 0.8322, π = 0.0898), as it was for the commensals on Homarus americanus (17 haplotypes, h = 0.7506, π = 0.0504). However, it was low for commensals on Nephrops norvegicus (6 haplotypes, h = 0.3899, π = 0.0035), and intermediate for cycliophorans on Homarus gammarus (5 haplotypes, h = 0.3020, π = 0.0140). Although two of the host lobsters co‐inhabit the coastal waters of Europe, a strong genetic structure (78.45% of the observed genetic variation) was detected among populations on all host species, indicating the existence of a reproductively isolated species on each lobster. In addition, genetic structure over long distances exists among populations on each host species. Such patterns can be explained by the limited dispersal ability of the cycliophoran chordoid larva. Demographic and phylogenetic analyses suggest old and possibly cryptic populations present on H. americanus and H. gammarus, while the latter may have experienced recent bottlenecks, perhaps during Pleistocene glaciations. Populations on N. norvegicus appear to be of recent origin.
Molecular Phylogenetics and Evolution | 2012
Matthias Obst; Søren Faurby; Somchai Bussarawit; Peter Funch
Horseshoe crabs are marine invertebrates well known for their exceptionally low rates of diversification during their entire evolutionary history. Despite the low species diversity in the group, the phylogenetic relationships among the extant species, especially among the three Asian species are still unresolved. Here we apply a new set of molecular genetic data in combination with a wide geographic sampling of the intra-specific diversity to reinvestigate the evolutionary history among the four living limulid xiphosurans. Our analysis of the intraspecific diversity reveals low levels of connectivity among Carcinoscorpius rotundicauda lineages, which can be explained by the estuarine-bound ecology of this species. Moreover, a clear genetic break across the Thai-Malay Peninsula suggests the presence of cryptic species in C. rotundicauda. The limulid phylogeny finds strong support for a monophyletic genus Tachypleus and a diversification of the three Asian species during the Paleogene period, with speciation events well separated in time by several million years. The tree topology suggests that the three Asian species originated in central South East Asia from a marine stem group that inhabited the shallow coastal waters between the Andaman Sea, Vietnam, and Borneo. In this region C. rotundicauda probably separated from the Tachypleus stem group by invading estuarine habitats, while Tachypleus tridentatus most likely migrated northeast along the Southern coast of China and towards Japan.
Apmis | 2012
Mette Møller Handrup; Kurt Fuursted; Peter Funch; Jens Møller; Henrik Daa Schrøder
Taurolidine has demonstrated inhibition of biofilm formation in vitro. The aim of this study was to compare the effect of catheter locking with taurolidine vs heparin in biofilm formation in central venous catheters. Forty‐eight children with cancer were randomized to catheter locking by heparin (n = 22) or taurolidine (n = 26), respectively. After removal, catheters were examined by standardized scanning electron microscopy to assess quantitative biofilm formation. Biofilm was present if morphologically typical structures and bacterial cells were identified. Quantitative and semi‐quantitative cultures were also performed. Biofilm was identified in 23 of 26 catheters from the taurolidine group and 21 of 22 catheters from the heparin group. A positive culture was made of six of the catheters locked with taurolidine and heparin, respectively (p = 0.78). The rate of catheter‐related bloodstream infections (CRBSI) was 0.1 per 1000 catheter‐days using taurolidine and 0.9 per 1000 catheter‐days using heparin (p = 0.03). This randomized trial confirmed that the use of taurolidine as catheter‐lock compared with heparin reduced the rate of CRBSIs; this reduction was not related to a reduction in the intraluminal biofilm formation and the rate of bacterial colonization detected by scanning electron microscopy in the two groups.
Molecular Ecology | 2010
Søren Faurby; Tim L. King; Matthias Obst; Eric M. Hallerman; Cino Pertoldi; Peter Funch
Populations of the American horseshoe crab, Limulus polyphemus, have declined, but neither the causes nor the magnitude are fully understood. In order to evaluate historic demography, variation at 12 microsatellite DNA loci surveyed in 1218 L. polyphemus sampled from 28 localities was analysed with Bayesian coalescent‐based methods. The analysis showed strong declines in population sizes throughout the species’ distribution except in the geographically isolated southern‐most population in Mexico, where a strong increase in population size was inferred. Analyses suggested that demographic changes in the core of the distribution occurred in association with the recolonization after the Ice Age and also by anthropogenic effects, such as the past overharvest of the species for fertilizer or the current use of the animals as bait for American eel (Anguilla rostrata) and whelk (Busycon spp.) fisheries. This study highlights the importance of considering both climatic changes and anthropogenic effects in efforts to understand population dynamics—a topic which is highly relevant in the ongoing assessments of the effects of climate change and overharvest.
Hydrobiologia | 2005
Peter Funch; Martin V. Sørensen; Matthias Obst
Rotifers are bilateral symmetric animals belonging to Protostomia. The ultrastructure of the rotiferan trophi suggests that they belong to the Gnathifera, and ultrastructural similarities between the integuments and spermatozoa as well as molecular evidence strongly suggest that rotifers and the parasitic acanthocephalans are closely related and form the clade Syndermata. Here we discuss the phylogenetic position of rotifers with regard to the gnathiferan groups. Originally, Gnathifera only included the hermaphroditic Gnathostomulida and the Syndermata. The synapomorphy supporting Gnathifera is the presence of pharyngeal hard parts such as jaws and trophi with similar ultrastructure. The newly discovered Micrognathozoa possesses such jaws and is a strong candidate for inclusion in Gnathifera because their cellular integument also has an apical intracytoplasmic lamina as in Syndermata. But Gnathifera might include other taxa. Potential candidates include the commensalistic Myzostomida and Cycliophora. Traditionally, Myzostomida has been included in the annelids but recent studies regard them either as sister group to the Acanthocephala or Cycliophora. Whether Cycliophora belongs to Gnathifera is still uncertain. Some analyses based on molecular data or total evidence point towards a close relationship between Cycliophora and Syndermata. Other cladistic studies using molecular data, morphological characters or total evidence suggest a sister group relationship between Cycliophora and Entoprocta. More molecular and morphological data and an improved sampling of taxa are obviously needed to elucidate the phylogenetic position of the rotifers and identify which phyla belong to Gnathifera.