Peter G. Barlow
Edinburgh Napier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter G. Barlow.
Journal of Leukocyte Biology | 2006
Peter G. Barlow; Yuexin Li; Thomas S. Wilkinson; Dawn M. E. Bowdish; Y. Elaine Lau; Celine Cosseau; Christopher Haslett; A. John Simpson; Robert E. W. Hancock; Donald J. Davidson
The human cathelicidin LL‐37 is a cationic host defense peptide (antimicrobial peptide) expressed primarily by neutrophils and epithelial cells. This peptide, up‐regulated under conditions of inflammation, has immunomodulatory and antimicrobial functions. We demonstrate that LL‐37 is a potent inhibitor of human neutrophil apoptosis, signaling through P2X7 receptors and G‐protein‐coupled receptors other than the formyl peptide receptor‐like‐1 molecule. This process involved modulation of Mcl‐1 expression, inhibition of BID and procaspase‐3 cleavage, and the activation of phosphatidylinositol‐3 kinase but not the extracellular signal‐regulated kinase 1/2 mitogen‐activated protein kinase pathway. In contrast to the inhibition of neutrophil apoptosis, LL‐37 induced apoptosis in primary airway epithelial cells, demonstrating alternate consequences of LL‐37‐mediated modulation of apoptotic pathways in different human primary cells. We propose that these novel immunomodulatory properties of LL‐37 contribute to peptide‐mediated enhancement of innate host defenses against acute infection and are of considerable significance in the development of such peptides and their synthetic analogs as potential therapeutics for use against multiple antibiotic‐resistant infectious diseases.
PLOS ONE | 2011
Peter G. Barlow; Pavel Svoboda; Annie Mackellar; Anthony Nash; Ian A. York; Jan Pohl; Donald J. Davidson; Ruben O. Donis
The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease.
Particle and Fibre Toxicology | 2005
Peter G. Barlow; Anna Clouter-Baker; Ken Donaldson; Janis MacCallum; Vicki Stone
BackgroundAlveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2) to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration.ResultsExposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2) as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size.ConclusionThe highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s) released by the type II cells in response to particle exposure.
American Journal of Respiratory Cell and Molecular Biology | 2010
Peter G. Barlow; Paula E. Beaumont; Celine Cosseau; Annie Mackellar; Thomas S. Wilkinson; Robert E. W. Hancock; Christopher Haslett; John R. W. Govan; A. John Simpson; Donald J. Davidson
Cationic host defense peptides are key, evolutionarily conserved components of the innate immune system. The human cathelicidin LL-37 is an important cationic host defense peptide up-regulated in infection and inflammation, specifically in the human lung, and was shown to enhance the pulmonary clearance of the opportunistic pathogen Pseudomonas aeruginosa in vivo by as yet undefined mechanisms. In addition to its direct microbicidal potential, LL-37 can modulate inflammation and immune mechanisms in host defense against infection, including the capacity to modulate cell death pathways. We demonstrate that at physiologically relevant concentrations of LL-37, this peptide preferentially promoted the apoptosis of infected airway epithelium, via enhanced LL-37-induced mitochondrial membrane depolarization and release of cytochrome c, with activation of caspase-9 and caspase-3 and induction of apoptosis, which only occurred in the presence of both peptide and bacteria, but not with either stimulus alone. This synergistic induction of apoptosis in infected cells was caspase-dependent, contrasting with the caspase-independent cell death induced by supraphysiologic levels of peptide alone. We demonstrate that the synergistic induction of apoptosis by LL-37 and Pseudomonas aeruginosa required specific bacteria-epithelial cell interactions with whole, live bacteria, and bacterial invasion of the epithelial cell. We propose that the LL-37-mediated apoptosis of infected, compromised airway epithelial cells may represent a novel inflammomodulatory role for this peptide in innate host defense, promoting the clearance of respiratory pathogens.
Acta Biomaterialia | 2010
Sarah Fox; Thomas S. Wilkinson; Paul S. Wheatley; Bo Xiao; Russell E. Morris; Alistair D. Sutherland; A. John Simpson; Peter G. Barlow; Anthony R. Butler; Ian L. Megson; Adriano G. Rossi
Nitric oxide (NO) is important for the regulation of a number of diverse biological processes, including vascular tone, neurotransmission, inflammatory cell responsiveness, defence against invading pathogens and wound healing. Transition metal exchanged zeolites are nanoporous materials with high-capacity storage properties for gases such as NO. The NO stores are liberated upon contact with aqueous environments, thereby making them ideal candidates for use in biological and clinical settings. Here, we demonstrate the NO release capacity and powerful bactericidal properties of a novel NO-storing Zn(2+)-exchanged zeolite material at a 50 wt.% composition in a polytetrafluoroethylene polymer. Further to our published data showing the anti-thrombotic effects of a similar NO-loaded zeolite, this study demonstrates the anti-bacterial properties of NO-releasing zeolites against clinically relevant strains of bacteria, namely Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Clostridium difficile. Thus our study highlights the potential of NO-loaded zeolites as biocompatible medical device coatings with anti-infective properties.
Antiviral Research | 2010
Jae-Min Song; Yeu-Chun Kim; Peter G. Barlow; M. Jaber Hossain; Kyoung-Mi Park; Ruben O. Donis; Mark R. Prausnitz; Richard W. Compans; Sang-Moo Kang
To develop a more effective vaccination method against H5N1 virus, we investigated the immunogenicity and protective efficacy after skin vaccination using microneedles coated with influenza virus-like particles containing hemagglutinin derived from A/Vietnam/1203/04 H5N1 virus (H5 VLPs). A single microneedle vaccination of mice with H5 VLPs induced increased levels of antibodies and provided complete protection against lethal challenge without apparent disease symptoms. In contrast, intramuscular injection with the same vaccine dose showed low levels of antibodies and provided only partial protection accompanied by severe body weight loss. Post-challenge analysis suggested that improved protection was associated with lower lung viral titers and enhanced generation of recall antibody secreting cells by microneedle vaccination. Thus, this study provides evidence that skin delivery of H5 VLP vaccines using microneedles designed for self-administration induces improved protection compared to conventional intramuscular immunization.
Journal of Leukocyte Biology | 2009
Hsin-Ni Li; Peter G. Barlow; Johun Bylund; Annie Mackellar; Åse Björstad; James Conlon; Pieter S. Hiemstra; Christopher Haslett; Mohini Gray; A. John Simpson; Adriano G. Rossi; Donald J. Davidson
Cathelicidins are CHDP with essential roles in innate host defense but also more recently associated with the pathogenesis of certain chronic diseases. These peptides have microbicidal potential and the capacity to modulate innate immunity and inflammatory processes. PMN are key innate immune effector cells with pivotal roles in defense against infection. The appropriate regulation of PMN function, death, and clearance is critical to innate immunity, and dysregulation is implicated in disease pathogenesis. The efferocytosis of apoptotic PMN, in contrast to necrotic cells, is proposed to promote the resolution of inflammation. We demonstrate that the human cathelicidin LL‐37 induced rapid secondary necrosis of apoptotic human PMN and identify an essential minimal region of LL‐37 required for this activity. Using these LL‐37‐induced secondary necrotic PMN, we characterize the consequence for macrophage inflammatory responses. LL‐37‐induced secondary necrosis did not inhibit PMN ingestion by monocyte‐derived macrophages and in contrast to expectation, was not proinflammatory. Furthermore, the anti‐inflammatory effects of apoptotic PMN on activated macrophages were retained and even potentiated after LL‐37‐induced secondary necrosis. However, this process of secondary necrosis did induce the release of potentially harmful PMN granule contents. Thus, we suggest that LL‐37 can be a potent inducer of PMN secondary necrosis during inflammation without promoting macrophage inflammation but may mediate host damage through PMN granule content release under chronic or dysregulated conditions.
PLOS ONE | 2010
Julia Steitz; Peter G. Barlow; Jaber Hossain; Eun Kim; Kaori Okada; Tom Kenniston; Sheri Rea; Ruben O. Donis; Andrea Gambotto
Background In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. Methods We generated two adenovirus(Ad5)-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA) from the recently emerged swine influenza isolate A/California/04/2009 (H1N1)pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNγ Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. Conclusions/Significance A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization.
Journal of Crohns & Colitis | 2017
Kirsty M. Hooper; Peter G. Barlow; Craig Stevens; Paul Henderson
Inflammatory bowel disease [IBD] is characterized by chronic inflammation of the gastrointestinal tract. Medications such as corticosteroids, thiopurines, immunomodulators and biologic agents are used to induce and maintain remission; however, response to these drugs is variable and can diminish over time. Defective autophagy has been strongly linked to IBD pathogenesis, with evidence showing that enhancing autophagy may be therapeutically beneficial by regulating inflammation and clearing intestinal pathogens. It is plausible that the therapeutic effects of some IBD drugs are mediated in part through modulation of the autophagy pathway, with studies investigating a wide range of diseases and cell types demonstrating autophagy pathway regulation by these agents. This review will highlight the current evidence, both in vitro and in vivo, for the modulation of autophagy by drugs routinely used in IBD. A clearer understanding of their mechanisms of action will be invaluable to utilize these drugs in a more targeted and personalized manner in this diverse and often complex group of patients.
Pathogens and Global Health | 2016
Fern Findlay; Lorna Proudfoot; Craig Stevens; Peter G. Barlow
Cationic Host Defense Peptides (HDP, also known as antimicrobial peptides) are crucial components of the innate immune system and possess broad-spectrum antibacterial, antiviral, and immunomodulatory activities. They can contribute to the rapid clearance of biological agents through direct killing of the organisms, inhibition of pro-inflammatory mediators such as lipopolysaccharide, and by modulating the inflammatory response to infection. Category A biological agents and materials, as classified by the United States National Institutes for Health, the US Centers for Disease Control and Prevention, and the US Department of Homeland Security, carry the most severe threat in terms of human health, transmissibility, and preparedness. As such, there is a pressing need for novel frontline approaches for prevention and treatment of diseases caused by these organisms, and exploiting the broad antimicrobial activity exhibited by cationic host defense peptides represents an exciting priority area for clinical research. This review will summarize what is known about the antimicrobial and antiviral effects of the two main families of cationic host defense peptides, cathelicidins, and defensins in the context of Category A biological agents which include, but are not limited to; anthrax (Bacillus anthracis), plague (Yersinia pestis), smallpox (Variola major), tularemia (Francisella tularensis). In addition, we highlight priority areas, particularly emerging viral infections, where more extensive research is urgently required.