Peter G. Barth
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter G. Barth.
Journal of Medical Genetics | 2005
J. van Reeuwijk; M.H.M. Janssen; C. van der Elzen; D. Beltran Valero de Bernabe; P. Sabatelli; Luciano Merlini; M. Boon; H. Scheffer; Martin Brockington; Francesco Muntoni; Martijn A. Huynen; Aad Verrips; Christopher A. Walsh; Peter G. Barth; Han G. Brunner; J.H.L.M. van Bokhoven
Background: Walker-Warburg syndrome (WWS) is an autosomal recessive condition characterised by congenital muscular dystrophy, structural brain defects, and eye malformations. Typical brain abnormalities are hydrocephalus, lissencephaly, agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigration, which causes a cobblestone cortex. Ocular abnormalities include cataract, microphthalmia, buphthalmos, and Peters anomaly. WWS patients show defective O-glycosylation of α-dystroglycan (α-DG), which plays a key role in bridging the cytoskeleton of muscle and CNS cells with extracellular matrix proteins, important for muscle integrity and neuronal migration. In 20% of the WWS patients, hypoglycosylation results from mutations in either the protein O-mannosyltransferase 1 (POMT1), fukutin, or fukutin related protein (FKRP) genes. The other genes for this highly heterogeneous disorder remain to be identified. Objective: To look for mutations in POMT2 as a cause of WWS, as both POMT1 and POMT2 are required to achieve protein O-mannosyltransferase activity. Methods: A candidate gene approach combined with homozygosity mapping. Results: Homozygosity was found for the POMT2 locus at 14q24.3 in four of 11 consanguineous WWS families. Homozygous POMT2 mutations were present in two of these families as well as in one patient from another cohort of six WWS families. Immunohistochemistry in muscle showed severely reduced levels of glycosylated α-DG, which is consistent with the postulated role for POMT2 in the O-mannosylation pathway. Conclusions: A fourth causative gene for WWS was uncovered. These genes account for approximately one third of the WWS cases. Several more genes are anticipated, which are likely to play a role in glycosylation of α-DG.
American Journal of Medical Genetics Part A | 2004
Peter G. Barth; Fredoen Valianpour; Valerie M. Bowen; Jan Lam; M. Duran; Frédéric M. Vaz
X‐linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM302060, BTHS) is a disorder with mitochondrial functional impairments and 3‐methylglutaconic aciduria that maps to Xq28. The associated G4.5 or TAZ gene has been identified but the encoded proteins have not yet been characterized. Following the prediction that the gene encodes one or more acyltransferases, lipid studies have shown a deficiency of cardiolipin, especially its tetralinoleoyl form (L4‐CL). Deficiency of L4‐CL was subsequently demonstrated in a variety of tissues, and determination in thrombocytes or cultured skin fibroblasts is now the most specific biochemical test available. BTHS is the first identified inborn error of metabolism that directly affects cardiolipin, a component of the inner mitochondrial membrane, necessary for proper functioning of the electron transport chain. We report here the finding of deficient docosahexaenoic acid and arachidonic acid in a proportion of patients with BTHS. The initial impression of a uniformly lethal infantile disease has to be modified. Age distribution in 54 living patients ranges between 0 and 49 years and peaks around puberty. Mortality is the highest in the first 4 years. The apex of the survival curve around puberty and the emergence of adults may reflect a dynamic shift towards increased survival. This trend is exemplified in a large pedigree previously published.
Brain & Development | 1993
Peter G. Barth
Cerebellar hypoplasia is common to a variety of congenital disorders. Both stable conditions and progressive (degenerative) disorders may cause cerebellar hypoplasia. Pontocerebellar hypoplasia (PCH) is distinct from cerebellar hypoplasias in general, because the ventral pons is affected. Reviewing both clinical and neuropathological evidence, two specific neurogenetic entities are delineated. It is proposed to call these, respectively, type 1 (PCH-1) and type 2 (PCH-2). In type 1 the hallmark is the presence of spinal anterior horn degeneration similar to Werdnig-Hoffmann disease. Presentation in the neonatal period is characterized by respiratory insufficiency, frequent congenital contractures, and a combination of central and peripheral motor signs. Patients die early, usually before 1 year of age. In type 2 the hallmark is the presence of chorea/dystonia, which is often severe, while spinal anterior horn pathology is absent. Patients have microcephaly and severely impaired mental and motor development. They frequently die during childhood. Neuronal degeneration in both types of PCH is non-specific. Reactive changes in the degenerated parts appear more extensive in type 1. Examples of both types are given. Differentiation of the two types appears straightforward and possible by clinical means. Carbohydrate-deficient glycoprotein syndrome, one other cause of (ponto)cerebellar hypoplasia, should be excluded in all cases of PCH by appropriate means.
Annals of Neurology | 1999
Ralf Triepels; L. van den Heuvel; Jan Loeffen; C. Buskens; R. Smeets; M.E. Rubio Gozalbo; Sandy Budde; Edwin C. M. Mariman; Frits A. Wijburg; Peter G. Barth; J. M. F. Trijbels; J. A. M. Smeitink
Leigh syndrome is the phenotypical expression of a genetically heterogeneous cluster of disorders, with pyruvate dehydrogenase complex deficiency and respiratory chain disorders as the main biochemical causes. We report the first missense mutation within the nuclear encoded complex I subunit, NDUFS7, in 2 siblings with neuropathologically proven complex I–deficient Leigh syndrome. Ann Neurol 1999;45:787–790
Journal of the Neurological Sciences | 1988
R. J. A. Wanders; Hugo S. A. Heymans; R. B. H. Schutgens; Peter G. Barth; H. van den Bosch; Joseph M. Tager
Although peroxisomes were initially believed to play only a minor role in mammalian metabolism, it is now clear that they catalyse essential reactions in a number of different metabolic pathways and thus play an indispensable role in intermediary metabolism. The metabolic pathways in which peroxisomes are involved include the biosynthesis of ether phospholipids and bile acids, the oxidation of very long chain fatty acids, prostaglandins and unsaturated long chain fatty acids and the catabolism of phytanate and (in man) pipecolate and glyoxylate. The importance of peroxisomes in cellular metabolism is stressed by the existence of a group of inherited diseases, the peroxisomal disorders, caused by an impairment in one or more peroxisomal functions. In the last decade our knowledge about peroxisomes and peroxisomal disorders has progressed enormously and has been the subject of several reviews. New developments include the identification of several additional peroxisomal disorders, the discovery of the primary defect in several of these peroxisomal disorders, the recognition of novel peroxisomal functions and the application of complementation analysis to obtain information on the genetic relationship between the different peroxisomal disorders. The peroxisomal disorders recognized at present comprise 12 different diseases, with neurological involvement in 10 of them. These diseases include: (1) those in which peroxisomes are virtually absent leading to a generalized impairment of peroxisomal functions (the cerebro-hepato-renal syndrome of Zellweger, neonatal adrenoleukodystrophy, infantile Refsum disease and hyperpipecolic acidaemia); (2) those in which peroxisomes are present and several peroxisomal functions are impaired (the rhizomelic form of chondrodysplasia punctata, combined peroxisomal beta-oxidation enzyme protein deficiency); and (3) those in which peroxisomes are present and only a single peroxisomal function is impaired (X-linked adrenoleukodystrophy, peroxisomal thiolase deficiency (pseudo-Zellweger syndrome), acyl-CoA oxidase deficiency (pseudo-neonatal adrenoleukodystrophy) and probably, the classic form of Refsum disease.
Journal of Neuropathology and Experimental Neurology | 1995
Ronald J. A. Wanders; R. B. H. Schutgens; Peter G. Barth
The peroxisomal disorders represent a group of inherited diseases in man in which there is an impairment in one or more peroxisomal functions. The disorders known up to now are usually subdivided into three groups depending upon whether there is a more generalized, multiple or single loss of peroxisomal functions. In this paper we will briefly describe the peroxisomal disorders known thus far with the biochemical abnormalities identified. Furthermore, we will describe a straightforward approach for the postnatal identification of patients suspected to suffer from a peroxisomal disorder which is of great importance since reliable prenatal diagnostic methods have become available for each of these disorders.
Nature Genetics | 2008
Birgit Budde; Yasmin Namavar; Peter G. Barth; Bwee Tien Poll-The; Gudrun Nürnberg; Christian Becker; Fred van Ruissen; Marian A. J. Weterman; Kees Fluiter; Erik T. Te Beek; Eleonora Aronica; Marjo S. van der Knaap; Wolfgang Höhne; Mohammad R. Toliat; Yanick J. Crow; Maja Steinlin; Thomas Voit; Filip Roelens; Wim Brussel; Knut Brockmann; Mårten Kyllerman; Eugen Boltshauser; Gerhard Hammersen; M.A.A.P. Willemsen; Lina Basel-Vanagaite; Ingeborg Krägeloh-Mann; Linda S. de Vries; László Sztriha; Francesco Muntoni; Colin D. Ferrie
Pontocerebellar hypoplasias (PCH) represent a group of neurodegenerative autosomal recessive disorders with prenatal onset, atrophy or hypoplasia of the cerebellum, hypoplasia of the ventral pons, microcephaly, variable neocortical atrophy and severe mental and motor impairments. In two subtypes, PCH2 and PCH4, we identified mutations in three of the four different subunits of the tRNA-splicing endonuclease complex. Our findings point to RNA processing as a new basic cellular impairment in neurological disorders.
Journal of Inherited Metabolic Disease | 1999
Peter G. Barth; Ronald J. A. Wanders; P. Vreken; E. A. M. Janssen; J. Lam; Frank Baas
X-linked cardioskeletal myopathy, neutropenia and abnormal mitochondria (MIM 302060) (synonyms: Barth syndrome, 3-methylglutaconic aciduria type II, endocardial fibroelastosis type 2) has been reported in patients and families from Europe, North America and Australia. Previous studies characterized the main components of the disease: dilated cardiomyopathy, skeletal myopathy, neutropenia, 3-methylglutaconic aciduria and diminished statural growth. Respiratory chain impairments have been found in several studies, without pinpointing a single enzyme complex. 3-Methylglutaconic aciduria is shared with several other disorders that affect the respiratory chain. Previous studies excluded a block in the major pathway of leucine catabolism. We performed leucine loading, accompanied by fasting, in patients and observed a significant rise of 3-methylglutaconic acid and 3-methylglutaric acid. Taken together with the absence of an enzymatic block in the major leucine catabolic route, the possibility remains that the increased basal excretion of 3-methylglutaconic acid and other products of branched-chain amino acids is the result of overload of this pathway or — more likely — mitochondrial leakage. Linkage studies have localized the gene to the Xq28 region. The associated tafazzin gene (TAZ), has been fully characterized recently, and mutations located in conserved regions have been reported. Carrier detection and prenatal diagnosis have now become possible through mutation analysis. Sequence homology of the TAZ gene to a highly conserved superclass of acyltransferases (Neuwalds hypothesis) predicts a glycerophospholipid as the missing end product. This points to the (lipid) structure of the inner mitochondrial membrane as a promising new area of research.
Brain | 2011
Yasmin Namavar; Peter G. Barth; Paul R. Kasher; Fred van Ruissen; Knut Brockmann; Günther Bernert; Karin Writzl; Edith Cheng; Donna M. Ferriero; Lina Basel-Vanagaite; Veerle Rc Eggens; Ingeborg Krägeloh-Mann; Linda De Meirleir; Mary King; John M. Graham; Arpad von Moers; N.V.A.M. Knoers; László Sztriha; Rudolf Korinthenberg; William B. Dobyns; Frank Baas; Bwee Tien Poll-The
Pontocerebellar hypoplasia is a group of autosomal recessive neurodegenerative disorders with prenatal onset. The common characteristics are cerebellar hypoplasia with variable atrophy of the cerebellum and the ventral pons. Supratentorial involvement is reflected by variable neocortical atrophy, ventriculomegaly and microcephaly. Mutations in the transfer RNA splicing endonuclease subunit genes (TSEN54, TSEN2, TSEN34) were found to be associated with pontocerebellar hypoplasia types 2 and 4. Mutations in the mitochondrial transfer RNA arginyl synthetase gene (RARS2) were associated with pontocerebellar hypoplasia type 6. We studied a cohort of 169 patients from 141 families for mutations in these genes, of whom 106 patients tested positive for mutations in one of the TSEN genes or the RARS2 gene. In order to delineate the neuroradiological and clinical phenotype of patients with mutations in these genes, we compared this group with 63 patients suspected of pontocerebellar hypoplasia who were negative on mutation analysis. We found a strong correlation (P < 0.0005) between TSEN54 mutations and a dragonfly-like cerebellar pattern on magnetic resonance imaging, in which the cerebellar hemispheres are flat and severely reduced in size and the vermis is relatively spared. Mutations in TSEN54 are clinically associated with dyskinesia and/or dystonia and variable degrees of spasticity, in some cases with pure generalized spasticity. Nonsense or splice site mutations in TSEN54 are associated with a more severe phenotype of more perinatal symptoms, ventilator dependency and early death. In addition, we present ten new mutations in TSEN54, TSEN2 and RARS2. Furthermore, we show that pontocerebellar hypoplasia type 1 together with elevated cerebrospinal fluid lactate may be caused by RARS2 mutations.
Journal of Biological Chemistry | 2003
Frédéric M. Vaz; Riekelt H. Houtkooper; Fredoen Valianpour; Peter G. Barth; Ronald J. A. Wanders
Barth syndrome (BTHS) is an X-linked recessive disorder caused by mutations in the TAZ gene and is characterized by cardiomyopathy, short stature, neutropenia, and 3-methylglutaconic aciduria. Recently it was found that BTHS patients exhibit a profound cardiolipin deficiency although the biosynthetic capacity to synthesize this lipid from its precursor phosphatidylglycerol is entirely normal. Like BTHS patients, a Saccharomyces cerevisiae strain, in which the yeast orthologue of the human TAZ gene has been disrupted, exhibits an abnormal cardiolipin profile as determined by tandem mass spectrometry. Additionally, this yeast strain grows poorly on non-fermentable carbon sources. We have used both properties of this yeast disruptant as a read-out system to test the physiological functionality of each of 12 different splice variants that have been reported for the human TAZ gene. Our results demonstrate that only the splice variant lacking exon 5 was able to complement the retarded growth of the yeast disruptant on selective plates and restore the cardiolipin profile to the wild type pattern. We conclude that this splice variant most likely represents the only physiologically important mRNA, at least with regard to cardiolipin metabolism.