Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Gibbs is active.

Publication


Featured researches published by Peter Gibbs.


Science Translational Medicine | 2014

Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies

Chetan Bettegowda; Mark Sausen; Rebecca J. Leary; Isaac Kinde; Yuxuan Wang; Nishant Agrawal; Bjarne Bartlett; Hao Wang; Brandon Luber; Rhoda M. Alani; Emmanuel S. Antonarakis; Nilofer Saba Azad; Alberto Bardelli; Henry Brem; John L. Cameron; Clarence Lee; Leslie A. Fecher; Gary L. Gallia; Peter Gibbs; Dung Le; Robert L. Giuntoli; Michael Goggins; Michael D. Hogarty; Matthias Holdhoff; Seung-Mo Hong; Yuchen Jiao; Hartmut H. Juhl; Jenny J. Kim; Giulia Siravegna; Daniel A. Laheru

Circulating tumor DNA can be used in a variety of clinical and investigational settings across tumor types and stages for screening, diagnosis, and identifying mutations responsible for therapeutic response and drug resistance. Circulating Tumor DNA for Early Detection and Managing Resistance Cancer evolves over time, without any warning signs. Similarly, the development of resistance to therapy generally becomes apparent only when there are obvious signs of tumor growth, at which point the patient may have lost valuable time. Although a repeat biopsy may be able to identify drug-resistant mutations before the tumor has a chance to regrow, it is usually not feasible to do many repeat biopsies. Now, two studies are demonstrating the utility of monitoring the patients’ blood for tumor DNA to detect cancer at the earliest stages of growth or resistance. In one study, Bettegowda and coauthors showed that sampling a patient’s blood may be sufficient to yield information about the tumor’s genetic makeup, even for many early-stage cancers, without a need for an invasive procedure to collect tumor tissue, such as surgery or endoscopy. The authors demonstrated the presence of circulating DNA from many types of tumors that had not yet metastasized or released detectable cells into the circulation. They could detect more than 50% of patients across 14 tumor types at the earliest stages, when these cancers may still be curable, suggesting that a blood draw could be a viable screening approach to detecting most cancers. They also showed that in patients with colorectal cancer, the information derived from circulating tumor DNA could be used to determine the optimal course of treatment and identify resistance to epidermal growth factor receptor (EGFR) blockade. Meanwhile, Misale and colleagues illustrated a way to use this information to overcome treatment resistance. These authors also found that mutations associated with EGFR inhibitor resistance could be detected in the blood of patients with colorectal cancer. In addition, they demonstrated that adding MEK inhibitors, another class of anticancer drugs, can successfully overcome resistance when given in conjunction with the EGFR inhibitors. Thus, the studies from Bettegowda and Misale and their colleagues show the effectiveness of analyzing circulating DNA from a variety of tumors and highlight the potential investigational and clinical applications of this novel technology for early detection, monitoring resistance, and devising treatment plans to overcome resistance. The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction–based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer.


The Journal of Pathology | 2014

Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours

Jérôme Galon; Bernhard Mlecnik; Gabriela Bindea; Helen K. Angell; Anne Berger; Christine Lagorce; Alessandro Lugli; Inti Zlobec; Arndt Hartmann; Carlo Bifulco; Iris D. Nagtegaal; Richard Palmqvist; Giuseppe Masucci; Gerardo Botti; Fabiana Tatangelo; Paolo Delrio; Michele Maio; Luigi Laghi; Fabio Grizzi; Corrado D'Arrigo; Fernando Vidal-Vanaclocha; Eva Zavadova; Lotfi Chouchane; Pamela S. Ohashi; Sara Hafezi-Bakhtiari; Bradly G. Wouters; Michael H. Roehrl; Linh T. Nguyen; Yutaka Kawakami; Shoichi Hazama

The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) TNM staging system provides the most reliable guidelines for the routine prognostication and treatment of colorectal carcinoma. This traditional tumour staging summarizes data on tumour burden (T), the presence of cancer cells in draining and regional lymph nodes (N) and evidence for distant metastases (M). However, it is now recognized that the clinical outcome can vary significantly among patients within the same stage. The current classification provides limited prognostic information and does not predict response to therapy. Multiple ways to classify cancer and to distinguish different subtypes of colorectal cancer have been proposed, including morphology, cell origin, molecular pathways, mutation status and gene expression‐based stratification. These parameters rely on tumour‐cell characteristics. Extensive literature has investigated the host immune response against cancer and demonstrated the prognostic impact of the in situ immune cell infiltrate in tumours. A methodology named ‘Immunoscore’ has been defined to quantify the in situ immune infiltrate. In colorectal cancer, the Immunoscore may add to the significance of the current AJCC/UICC TNM classification, since it has been demonstrated to be a prognostic factor superior to the AJCC/UICC TNM classification. An international consortium has been initiated to validate and promote the Immunoscore in routine clinical settings. The results of this international consortium may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM‐I (TNM‐Immune).


Journal of Translational Medicine | 2012

Cancer classification using the Immunoscore: a worldwide task force

Jérôme Galon; Franck Pagès; Francesco M. Marincola; Helen K. Angell; Magdalena Thurin; Alessandro Lugli; Inti Zlobec; Anne Berger; Carlo Bifulco; Gerardo Botti; Fabiana Tatangelo; Cedrik M. Britten; Sebastian Kreiter; Lotfi Chouchane; Paolo Delrio; Hartmann Arndt; Michele Maio; Giuseppe Masucci; Martin C. Mihm; Fernando Vidal-Vanaclocha; James P. Allison; Sacha Gnjatic; Leif Håkansson; Christoph Huber; Harpreet Singh-Jasuja; Christian Ottensmeier; Heinz Zwierzina; Luigi Laghi; Fabio Grizzi; Pamela S. Ohashi

Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the ‘Immunoscore’ into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).


Journal of Clinical Oncology | 2007

Radioembolization of Liver Metastases From Colorectal Cancer Using Yttrium-90 Microspheres With Concomitant Systemic Oxaliplatin, Fluorouracil, and Leucovorin Chemotherapy

Ricky A. Sharma; Guy van Hazel; Bruno Morgan; David P. Berry; Keith Blanshard; David Price; Geoffrey D. Bower; Jennifer A. Shannon; Peter Gibbs; William P. Steward

PURPOSE Liver metastases represent the principal cause of death in patients with advanced colorectal cancer (CRC). Injection of resin microspheres (SIR Spheres)--containing the beta-emitter, yttrium-90--into the arterial supply of the liver can cause radioembolization of metastases. This treatment has not been tested with the radiosensitizing chemotherapy, oxaliplatin, which appears synergistic in the treatment of CRC when combined with fluorouracil and leucovorin (FOLFOX). PATIENTS AND METHODS A phase I study of SIR-Spheres therapy with modified FOLFOX4 systemic chemotherapy was conducted in patients with inoperable liver metastases from CRC who had not previously received chemotherapy for metastatic disease. Oxaliplatin (30 to 85 mg/m2) was administered for the first three cycles with full FOLFOX4 doses from cycle 4 until cycle 12. The primary end point was toxicity. RESULTS Twenty patients were enrolled onto the study. Five patients experienced National Cancer Institute (NCI; Bethesda, MD) grade 3 abdominal pain, two of whom had microsphere-induced gastric ulcers. The dose-limiting toxicity was grade 3 or 4 neutropenia, which was recorded in 12 patients. One episode of transient grade 3 hepatotoxicity was recorded. Mean splenic volume increased by 92% following 6 months of protocol therapy. Partial responses were demonstrated in 18 patients and stable disease in two patients. Two patients underwent partial hepatic resection following protocol therapy. Median progression-free survival was 9.3 months, and median time to progression in the liver was 12.3 months. CONCLUSION The maximum-tolerated dose was 60 mg/m2 of oxaliplatin for the first three cycles, with full FOLFOX4 doses thereafter. This chemoradiation regime merits evaluation in phase II-III trials.


Cancer | 2011

Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer.

Ben Tran; Scott Kopetz; Jeanne Tie; Peter Gibbs; Zhi Qin Jiang; Christopher Hanyoung Lieu; Atin Agarwal; Dipen M. Maru; Oliver M. Sieber; Jayesh Desai

It is hypothesized that BRAF mutant cancers represent a discrete subset of metastatic colorectal cancer (CRC) defined by poorer survival. This study investigates whether BRAF mutant CRC is further defined by a distinct pattern of metastatic spread and explores the impact of BRAF mutation and microsatellite instability (MSI) on prognosis in metastatic CRC.


Clinical Cancer Research | 2009

Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer.

Robert N. Jorissen; Peter Gibbs; Michael Christie; Saurabh Prakash; Lara Lipton; Jayesh Desai; David Kerr; Lauri A. Aaltonen; Diego Arango; Mogens Kruhøffer; Torben F. Ørntoft; Claus L. Andersen; Mike Gruidl; Vidya Pundalik Kamath; Steven Eschrich; Timothy J. Yeatman; Oliver M. Sieber

Purpose: Colorectal cancer prognosis is currently predicted from pathologic staging, providing limited discrimination for Dukes stage B and C disease. Additional markers for outcome are required to help guide therapy selection for individual patients. Experimental Design: A multisite single-platform microarray study was done on 553 colorectal cancers. Gene expression changes were identified between stage A and D tumors (three training sets) and assessed as a prognosis signature in stage B and C tumors (independent test and external validation sets). Results: One hundred twenty-eight genes showed reproducible expression changes between three sets of stage A and D cancers. Using consistent genes, stage B and C cancers clustered into two groups resembling early-stage and metastatic tumors. A Prediction Analysis of Microarray algorithm was developed to classify individual intermediate-stage cancers into stage A–like/good prognosis or stage D–like/poor prognosis types. For stage B patients, the treatment adjusted hazard ratio for 6-year recurrence in individuals with stage D–like cancers was 10.3 (95% confidence interval, 1.3-80.0; P = 0.011). For stage C patients, the adjusted hazard ratio was 2.9 (95% confidence interval, 1.1-7.6; P = 0.016). Similar results were obtained for an external set of stage B and C patients. The prognosis signature was enriched for downregulated immune response genes and upregulated cell signaling and extracellular matrix genes. Accordingly, sparse tumor infiltration with mononuclear chronic inflammatory cells was associated with poor outcome in independent patients. Conclusions: Metastasis-associated gene expression changes can be used to refine traditional outcome prediction, providing a rational approach for tailoring treatments to subsets of patients. (Clin Cancer Res 2009;15(24):7642–51)


Investigative Radiology | 2009

Correlation of ADC and T2 Measurements With Cell Density in Prostate Cancer at 3.0 Tesla

Peter Gibbs; Gary P Liney; Martin D. Pickles; Bashar Zelhof; Greta Rodrigues; Lindsay W. Turnbull

Objectives:To assess the relationship between MRI derived parameters (apparent diffusion coefficient (ADC) and T2 relaxation time) and tumor cellularity as determined from whole mounted radical prostatectomy specimens, for both prostatic carcinoma and normal peripheral zone tissue. Materials and Methods:Over a 16-month period, 20 patients (mean age: 61 years, range: 42–70 years) were prospectively recruited. Diffusion and T2 imaging were performed on a 3.0 Tesla scanner to enable subsequent ADC and T2 calculation. After radical retropubic prostatectomy specimens were whole-mounted and regions of interest (ROIs) drawn in areas of prostatic carcinoma and normal peripheral zone. Cell density was then determined using an adaptive histogram thresholding technique. Differences in tissue type were explored using the unpaired t test while the relationship between parameters was assessed using scatter-plots and the Pearson correlation coefficient. Results:Significant differences (P < 0.0001 in all cases) were noted between peripheral zone tissue and prostatic carcinoma in terms of ADC (1.88 ± 0.22 vs. 1.43 ± 0.19 × 10−3 mm2/s), T2 (142 ± 24 vs. 109 ± 20 milliseconds), and cell density (9.4% ± 3.0% vs. 19.8% ± 5.3%). A significant negative correlation with cell density was noted for both ADC (R = −0.695, P < 0.0001) and T2 (R = −0.505, P = 0.001). Trends for increased cell density, decreased ADC, and decreased T2 with increasing Gleason score were also noted. Conclusions:ADC and to a lesser extent T2 are good indicators of cell density. Because of the potential link with Gleason score, MRI derived parameters may have a prognostic role with regard to potential metastatic activity and tumor aggressiveness.


Science Translational Medicine | 2016

Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer

Jeanne Tie; Yuxuan Wang; Cristian Tomasetti; Lu Li; Simeon Springer; Isaac Kinde; Natalie Silliman; Mark Tacey; Hui-Li Wong; Michael Christie; Suzanne Kosmider; Iain Skinner; Rachel Wong; Malcolm Steel; Ben Tran; Jayesh Desai; Ian Jones; Andrew Haydon; Theresa Hayes; Timothy Jay Price; Robert L. Strausberg; Luis A. Diaz; Nickolas Papadopoulos; Kenneth W. Kinzler; Bert Vogelstein; Peter Gibbs

Detection of circulating tumor DNA in patients with resected stage II colon cancer provides evidence of residual disease. Footprints of persistent cancer Stage II colon cancer, which has spread through the wall of the colon but has not metastasized to the lymph nodes, can present a therapeutic dilemma. On one hand, these tumors can usually be completely removed by surgery, and the majority does not recur even without chemotherapy. On the other hand, it is difficult to determine which of these tumors will recur and to identify patients who would benefit from adjuvant chemotherapy after surgery. Tie et al. show that the presence of circulating tumor DNA in a patient’s blood after surgery is a sign of persistent tumor and a greatly increased risk of relapse, suggesting that this group of patients may require chemotherapy to prevent recurrence. Detection of circulating tumor DNA (ctDNA) after resection of stage II colon cancer may identify patients at the highest risk of recurrence and help inform adjuvant treatment decisions. We used massively parallel sequencing–based assays to evaluate the ability of ctDNA to detect minimal residual disease in 1046 plasma samples from a prospective cohort of 230 patients with resected stage II colon cancer. In patients not treated with adjuvant chemotherapy, ctDNA was detected postoperatively in 14 of 178 (7.9%) patients, 11 (79%) of whom had recurred at a median follow-up of 27 months; recurrence occurred in only 16 (9.8 %) of 164 patients with negative ctDNA [hazard ratio (HR), 18; 95% confidence interval (CI), 7.9 to 40; P < 0.001]. In patients treated with chemotherapy, the presence of ctDNA after completion of chemotherapy was also associated with an inferior recurrence-free survival (HR, 11; 95% CI, 1.8 to 68; P = 0.001). ctDNA detection after stage II colon cancer resection provides direct evidence of residual disease and identifies patients at very high risk of recurrence.


PLOS Genetics | 2011

Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer.

Ian Tomlinson; Luis Carvajal-Carmona; Sara E. Dobbins; Albert Tenesa; Angela Jones; Kimberley Howarth; Claire Palles; Peter Broderick; Emma Jaeger; Susan M. Farrington; Annabelle Lewis; James Prendergast; Alan Pittman; Evropi Theodoratou; Bianca Olver; Marion Walker; Steven Penegar; Ella Barclay; Nicola Whiffin; Lynn Martin; Stephane Ballereau; Amy Lloyd; Maggie Gorman; Steven Lubbe; Bryan Howie; Jonathan Marchini; Clara Ruiz-Ponte; Ceres Fernandez-Rozadilla; Antoni Castells; Angel Carracedo

Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10−10) and BMP2 (rs4813802, P = 4.65×10−11). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10−8) and rs11632715 (P = 2.30×10−10). As low-penetrance predisposition variants become harder to identify—owing to small effect sizes and/or low risk allele frequencies—approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.


Annals of Oncology | 2015

Circulating Tumor DNA as an Early Marker of Therapeutic Response in Patients with Metastatic Colorectal Cancer

Jeanne Tie; Isaac Kinde; Yuxuan Wang; Hui-Li Wong; Roebert J; Michael Christie; Mark Tacey; Rachel Wong; Madhu Singh; Christos Stelios Karapetis; Jayesh Desai; Ben Tran; Robert L. Strausberg; Luis A. Diaz; Nickolas Papadopoulos; Kenneth W. Kinzler; Bert Vogelstein; Peter Gibbs

BACKGROUND Early indicators of treatment response in metastatic colorectal cancer (mCRC) could conceivably be used to optimize treatment. We explored early changes in circulating tumor DNA (ctDNA) levels as a marker of therapeutic efficacy. PATIENTS AND METHODS This prospective study involved 53 mCRC patients receiving standard first-line chemotherapy. Both ctDNA and CEA were assessed in plasma collected before treatment, 3 days after treatment and before cycle 2. Computed tomography (CT) scans were carried out at baseline and 8-10 weeks and were centrally assessed using RECIST v1.1 criteria. Tumors were sequenced using a panel of 15 genes frequently mutated in mCRC to identify candidate mutations for ctDNA analysis. For each patient, one tumor mutation was selected to assess the presence and the level of ctDNA in plasma samples using a digital genomic assay termed Safe-SeqS. RESULTS Candidate mutations for ctDNA analysis were identified in 52 (98.1%) of the tumors. These patient-specific candidate tissue mutations were detectable in the cell-free DNA from the plasma of 48 of these 52 patients (concordance 92.3%). Significant reductions in ctDNA (median 5.7-fold; P < 0.001) levels were observed before cycle 2, which correlated with CT responses at 8-10 weeks (odds ratio = 5.25 with a 10-fold ctDNA reduction; P = 0.016). Major reductions (≥10-fold) versus lesser reductions in ctDNA precycle 2 were associated with a trend for increased progression-free survival (median 14.7 versus 8.1 months; HR = 1.87; P = 0.266). CONCLUSIONS ctDNA is detectable in a high proportion of treatment naïve mCRC patients. Early changes in ctDNA during first-line chemotherapy predict the later radiologic response.

Collaboration


Dive into the Peter Gibbs's collaboration.

Top Co-Authors

Avatar

Jeanne Tie

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui-Li Wong

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jayesh Desai

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Ian Jones

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Ben Tran

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Desmond Yip

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge