Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Grathwohl is active.

Publication


Featured researches published by Peter Grathwohl.


Advances in Water Resources | 2002

New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks.

Richelle M. Allen-King; Peter Grathwohl; William P. Ball

Abstract Heterogeneity in naturally occurring carbonaceous materials (CMs) causes sorbed hydrophobic organic compound (HOC) concentrations in soils, sediments, and rocks to occur as a combination of surface adsorption and phase partitioning, with the latter typically more linearly dependent on aqueous concentration. In this manuscript, we describe a model to simulate HOC sorption as the combined effect of adsorption to thermally altered CM and a more linear solvation-driven absorption into gel-like CM (organic matter). We describe different forms of thermally altered CM (such as soots, chars, coals, and kerogen), the manner in which these materials can serve as especially strong adsorbents, and the conditions under which they can control solid–aqueous distribution. Specific examples of model fits to soil, sediment and rock samples with identified thermally altered CM components provide a linkage between sorption components and sorbent material properties. Because both the adsorption and partition components are scalable by compound solubility, it may often be possible to estimate nonlinear isotherms for a wide range of chemicals based on comparatively few experimental measurements. Thermally altered CM is widespread in the environment and can serve as an important sorbent even when present in small quantities (especially at low concentrations of adsorbates). In this context, the sorption modeling refinements described in this work are expected to have wide applicability. Given that solid/water distribution is a central process affecting contaminant fate, such refined models are an essential element for better estimates of risk and improved remediation design.


Journal of Contaminant Hydrology | 2001

Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity

Thomas B. Boving; Peter Grathwohl

Matrix diffusion is an important transport process in geologic materials of low hydraulic conductivity. For predicting the fate and transport of contaminants, a detailed understanding of the diffusion processes in natural porous media is essential. In this study, diffusive tracer transport (iodide) was investigated in a variety of geologically different limestone and sandstone rocks. Porosity, structural and mineralogical composition, hydraulic conductivity, and other rock properties were determined. The effective diffusion coefficients were measured using the time-lag method. The results of the diffusion experiments indicate that there is a close relationship between total porosity and the effective diffusion coefficient of a rock (analogous to Archies Law). Consequently, the tortousity factor can be expressed as a function of total porosity. The relationship fits best for thicker samples (> 1.0 cm) with high porosities (> 20%), because of the reduced influence of heterogeneity in larger samples. In general, these correlations appear to be a simple way to determine tortuosity and the effective diffusion coefficient from easy to determine rock porosity values.


Journal of Contaminant Hydrology | 2002

Transverse vertical dispersion in groundwater and the capillary fringe.

I.D Klenk; Peter Grathwohl

Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were << 1 mm. The new measurements and the literature values indicate that alpha(tv) apparently declines with increasing flow velocity. The latter is attributed to incomplete diffusive mixing at the pore scale (pore throats). A simple conceptual model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.


Journal of Contaminant Hydrology | 2009

Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation.

Massimo Rolle; C. Eberhardt; Gabriele Chiogna; Olaf A. Cirpka; Peter Grathwohl

Transport and natural attenuation of contaminant plumes in groundwater are often controlled by transverse dispersion. The extent of mixing between dissolved reaction partners at the fringe of a plume determines its length and depends strongly on the groundwater flow field. Transient flow conditions as well as the focusing of the flow in high-permeability zones may enhance transverse mixing of dissolved species and, therefore, create favorable conditions for the natural attenuation of contaminant plumes. The aim of the present study is to experimentally test the influence of these processes on solute mixing and to directly compare the results with those under analogous homogeneous and steady-state conditions. We have performed conservative and reactive tracer experiments in a quasi two-dimensional tank filled with glass beads of different sizes. The experiments have been carried out in both homogeneous and heterogeneous porous media under steady-state and transient (i.e. oscillating) flow fields. We used fluorescein as conservative tracer; whereas an alkaline solution (NaOH) was injected into ambient acidic water (HCl) in the reactive experiments. A pH indicator was added to the reacting solutions in order to visualize the emerging plume. We simulated the laboratory experiments with a numerical model and compared the outcomes of the model with the measured concentrations at the outlet of the tank and with the observed tracer plumes. Spatial moments, a newly defined flux-related dilution index, the product mass fluxes and the reaction enhancement factors were calculated to quantify the differences in mixing and reaction extent under various experimental conditions. The results show that flow focusing in heterogeneous porous media significantly enhances transverse mixing and mixing-controlled reactions, whereas temporally changing flow fields appear to be of minor importance.


Journal of Contaminant Hydrology | 2002

Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs

C. Eberhardt; Peter Grathwohl

Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results inidicate (1) that Raoults law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (< 0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively.


Environmental Science & Technology | 2010

Evidence of Compound-Dependent Hydrodynamic and Mechanical Transverse Dispersion by Multitracer Laboratory Experiments

Gabriele Chiogna; C. Eberhardt; Peter Grathwohl; Olaf A. Cirpka; Massimo Rolle

Mass transfer, mixing, and therefore reaction rates during transport of solutes in porous media strongly depend on dispersion and diffusion. In particular, transverse mixing is a significant mechanism controlling natural attenuation of contaminant plumes in groundwater. The aim of the present study is to gain a deeper understanding of vertical transverse dispersive mixing of reaction partners in saturated porous media. Multitracer laboratory experiments in a quasi two-dimensional tank filled with glass beads were conducted and transverse dispersion coefficients were determined from high-resolution vertical concentration profiles. We investigated the behavior of conservative tracers (i.e., fluorescein, dissolved oxygen, and bromide), with different aqueous diffusion coefficients, in a range of grain-related Peclet numbers between 1 and 562. The experimental results do not agree with the classical linear parametric model of hydrodynamic dispersion, in which the transverse component is approximated as the sum of pore diffusion and a compound-independent mechanical dispersion term. The outcome of the multitracer experiments clearly indicates a nonlinear relation between the dispersion coefficient and the average linear velocity. More importantly, we show that transverse mechanical dispersion depends on the diffusion coefficient of the compound, at least at the experimental bench-scale. This result has to be considered in reactive-transport models, because the typical assumption that two reactants with different aqueous diffusive properties are characterized by the same dispersive behavior does not hold anymore.


Science of The Total Environment | 2015

Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project

Alícia Navarro-Ortega; Vicenç Acuña; Alberto Bellin; Peter Burek; Giorgio Cassiani; Redouane Choukr-Allah; Sylvain Dolédec; Arturo Elosegi; Federico Ferrari; Antoni Ginebreda; Peter Grathwohl; Colin Jones; Philippe Ker Rault; Kasper Kok; Phoebe Koundouri; Ralf Ludwig; Ralf Merz; Radmila Milačič; Isabel Muñoz; Grigory Nikulin; Claudio Paniconi; Momir Paunović; Mira Petrovic; Laia Sabater; Sergi Sabater; Nikolaos Skoulikidis; Adriaan Slob; Georg Teutsch; Nikolaos Voulvoulis; Damià Barceló

Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA.


Journal of Contaminant Hydrology | 2009

Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes

Robert D. Bauer; Massimo Rolle; Sebastian Bauer; C. Eberhardt; Peter Grathwohl; Olaf Kolditz; Rainer U. Meckenstock; Christian Griebler

In case of dissolved electron donors and acceptors, natural attenuation of organic contaminant plumes in aquifers is governed by hydrodynamic mixing and microbial activity. Main objectives of this work were (i) to determine whether aerobic and anaerobic biodegradation in porous sediments is controlled by transverse dispersion, (ii) to elucidate the effect of sediment heterogeneity on mixing and biodegradation, and (iii) to search for degradation-limiting factors. Comparative experiments were conducted in two-dimensional sediment microcosms. Aerobic toluene and later ethylbenzene degradation by Pseudomonas putida strain F1 was initially followed in a plume developing from oxic to anoxic conditions and later under steady-state mixing-controlled conditions. Competitive anaerobic degradation was then initiated by introduction of the denitrifying strain Aromatoleum aromaticum EbN1. In homogeneous sand, aerobic toluene degradation was clearly controlled by dispersive mixing. Similarly, under denitrifying conditions, microbial activity was located at the plumes fringes. Sediment heterogeneity caused flow focusing and improved the mixing of reactants. Independent from the electron accepting process, net biodegradation was always higher in the heterogeneous setting with a calculated efficiency plus of 23-100% as compared to the homogeneous setup. Flow and reactive transport model simulations were performed in order to interpret and evaluate the experimental results.


Journal of Contaminant Hydrology | 2001

Occurrence and attenuation of specific organic compounds in the groundwater plume at a former gasworks site

Daniela Zamfirescu; Peter Grathwohl

The changing contaminant pattern with travelled distance was investigated in the anaerobic groundwater plume downstream from an extended zone containing residual NAPL at a former gas manufacturing plant. With increasing distance, O- and N-heterocyclic aromatic compounds are enriched in the plume relative to the usually assessed coal tar constituents (poly- and monocyclic aromatic compounds). In a first approximation, the overall concentration decrease of the investigated compounds follows a first order overall decay. The half life distance in the plume downgradient from the source varied between 20 m for benzene and up to 167-303 m for alkyl-naphthalenes. Acenaphthene is degraded only within about 50 m downstream from the source area, then its concentration remains constant (ca. 180 microg/l) and far above the legal limit. Dimethyl-benzofurans were the most recalcitrant among all compounds which could be quantified with the analytical method available. The overall groundwater contamination in the plume is seriously underestimated if only BTEX and 16-EPA-PAHs are monitored.


Waste Management | 2009

Comparison of percolation to batch and sequential leaching tests: Theory and data

Peter Grathwohl; Bernd Susset

Leaching tests are becoming more relevant in assessing solid waste material, particularly with respect to groundwater risks. In the field, water infiltration is the dominant leaching mechanism, which is simulated in the lab with batch and column tests. In this study, we compared percolation, through analytical solutions of the advection-dispersion equation, to laboratory batch and sequential leaching tests. The analytical solutions are supported with comprehensive data from various field and laboratory leaching of different solutes from waste materials and soils collected in long-term joint research projects funded by the German Federal Ministry for Education and Research and the Federal Environment Agency. The comparison of theory and data is facilitated if concentrations and cumulative release are plotted versus the liquid-solid ratios (LS). Both theory and data indicate that leaching behaviour is independent of duration and physical dimensions of the leaching tests. This holds even if field lysimeters are compared to laboratory columns of different size, different flow velocities as well as different contact times. In general, laboratory batch tests over predict effluent concentrations (for LS<K(d)). Leaching of solutes from solid samples of certain materials (e.g. chloride from incineration ashes or sulphate from demolition waste) in column and lysimeter tests compares very well and agrees with the analytical solutions. Overall, reproducibility and agreement with theory of column tests are better than batch tests, presumably because the latter are prone to artefacts (e.g. in liquid-solid separation steps). Theory and data fit surprisingly well, despite the fact that the theory is based on the local equilibrium assumption; non-linear sorption and chemical reactions in the solid waste materials are not considered.

Collaboration


Dive into the Peter Grathwohl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Rolle

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Philipp Blum

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tilman Gocht

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uli Maier

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

C. Eberhardt

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Georg Teutsch

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge