Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter H. Bui is active.

Publication


Featured researches published by Peter H. Bui.


Toxicological Sciences | 2009

Resveratrol Inhibits Dioxin-Induced Expression of Human CYP1A1 and CYP1B1 by Inhibiting Recruitment of the Aryl Hydrocarbon Receptor Complex and RNA Polymerase II to the Regulatory Regions of the Corresponding Genes

Sudheer R. Beedanagari; Ilona G. Bebenek; Peter H. Bui; Oliver Hankinson

The CYP1A family of cytochrome P450s (CYPs), comprising CYP1A1, CYP1A2, and CYP1B1, plays a role in bioactivation of several procarcinogens to carcinogenic derivatives, and also in detoxification of several xenobiotic compounds. Resveratrol (3,4,5-trihydroxystelbine) is a naturally occurring compound that has been shown in a number of studies to inhibit the induction of CYP1A1 and CYP1B1 by dioxin (2,3,7,8-tetrachloro-dibenzo-p-dioxin), but the mechanism(s) of resveratrol inhibition is controversial. In the current study, 100nM dioxin treatment for 24, 48, and 72 h induced CYP1A1, CYP1A2, and CYP1B1 mRNA levels in the human breast cancer cell line MCF-7, and CYP1A1 and CYP1A2 mRNA levels in the human hepatocellular carcinoma cell line, HepG2. Simultaneous treatment with 10 microM resveratrol significantly inhibited dioxin-induced mRNA expression levels of these genes in both cell lines. Our studies are novel in that we used the chromatin immunoprecipitation assay to assay dioxin-induced recruitment of the aryl hydrocarbon receptor (AHR), and aryl hydrocarbon nuclear translocator (ARNT) to the enhancer regions and recruitment of RNA polymerase II to the promoter regions, of the CYP1A1 and CYP1B1 genes in their natural chromosomal settings. These recruitments were significantly inhibited in cells cotreated with resveratrol. Our studies thus indicate that resveratrol inhibits dioxin induction of the CYP1 family members either by directly or indirectly inhibiting the recruitment of the transcription factors AHR and ARNT to the xenobiotic response elements of the corresponding genes. The reduced transcriptional factor binding at their enhancers then results in reduced pol II recruitment at the promoters of these genes.


Molecular Pharmacology | 2010

Role of Epigenetic Mechanisms in Differential Regulation of the Dioxin-Inducible Human CYP1A1 and CYP1B1 Genes

Sudheer R. Beedanagari; Robert T. Taylor; Peter H. Bui; Feng Wang; Derek W. Nickerson; Oliver Hankinson

The aryl hydrocarbon receptor (AhR) mediates induction of CYP1A1 and CYP1B1 by 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (dioxin) via binding to xenobiotic-responsive elements (XREs) in their enhancer regions. CYP1A1 and CYPIB1 were both inducible by dioxin in human MCF-7 cells. However, only CYP1A1 was inducible in human HepG2 cells. Further experiments focused on providing an explanation for this last observation. Dioxin induced the recruitment of AHR and the transcriptional coactivators p300 and p300/cAMP response element-binding protein binding protein-associated factor (PCAF) to the CYP1B1 enhancer in HepG2 cells but failed to induce recruitment of RNA polymerase II (polII) or the TATA binding protein (TBP) and acetylations of histones 3 and 4 or methylation of histone 3 at the promoter. Because p300 was required for dioxin induction of the aforementioned histone modifications at the CYP1B1 promoter and for induction of CYP1B1 transcription (in MCF-7 cells), the recruitments of p300 and AhR, although necessary, are not sufficient for eliciting the above responses to dioxin. Cytosine residues within CpG dinucleotides at the enhancer, including those within the XREs, were partially methylated, whereas those at the promoter were fully methylated. Treatment of HepG2 cells with 5-aza-2′-deoxycytidine led to partial demethylation of the promoter, restored polII and TBP binding, and CYP1B1 inducibility. Thus, the deficiency of CYP1B1 induction in HepG2 cells is ascribable to cytosine methylation at the promoter, which prevents recruitment of TBP and polII. It is noteworthy that our data indicate that stable recruitment of p300 and PCAF to the CYP1B1 gene does not require their tethering to the promoter and to the enhancer.


Molecular Pharmacology | 2009

Functional Characterization of Human Cytochrome P450 2S1 Using a Synthetic Gene-Expressed Protein in Escherichia coli

Peter H. Bui; Oliver Hankinson

Human cytochrome P450 2S1 was recently identified and shown to be inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin and hypoxia. It is highly expressed in epithelial cells of tissues that are exposed to the environment and in many tumors of epithelial origin. The biological function of CYP2S1 has not yet been determined, although its possible role in carcinogen metabolism has been suggested. In this report, we investigated its ability to metabolize carcinogens. To obtain a large quantity of active enzyme for substrate screening, we overexpressed CYP2S1 in Escherichia coli (200 nM culture), using a synthetic gene approach. High-level expression allowed us to achieve purification of CYP2S1 with high specific content and purity (16 nmol/mg). Despite high-level expression, we found that CYP2S1 was not readily reduced by cytochrome P450 reductase, and thus no activity was found using NADPH. However, the oxidative activity of CYP2S1 was supported by cumene hydroperoxide or H2O2, such that CYP2S1 oxidized many important environmental carcinogens, including benzo[a]pyrene, 9,10-dihydro-benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene-7,8-dihydrodiol, aflatoxin B1, naphthalene, and styrene, with high turnover. Most substrates tested were converted to detoxification products, except in the case of benzo[a]pyrene-7,8-dihydrodiol, which was converted into the very potent carcinogenic metabolite 7,8-dihydrodiol-trans-9,10-epoxide at a relatively efficient rate (Km = 12.4 ± 2 μM, turnover = 2.3 min−1). This metabolite formation was also supported both in vitro and in vivo by fatty acid hydroperoxides described in the accompanying report (p. 1044). Together, these data indicate that CYP2S1 contributes to the metabolism of environmental carcinogens via an NADPH independent activity.


Drug Metabolism and Disposition | 2011

Human CYP2S1 Metabolizes Cyclooxygenase- and Lipoxygenase-Derived Eicosanoids

Peter H. Bui; Satoshi Imaizumi; Sudheer R. Beedanagari; Srinivasa T. Reddy; Oliver Hankinson

CYP2S1 is a recently described dioxin-inducible cytochrome P450. We previously demonstrated that human CYP2S1 oxidizes a number of carcinogens but only via the peroxide shunt. In this article, we investigated whether human CYP2S1 can metabolize cyclooxygenase- and lipoxygenase-derived lipid peroxides in a NADPH-independent fashion. Human CYP2S1 metabolizes prostaglandin G2 (PGG2) (Km = 0.267 ± 0.072 μM) into several products including 12S-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT). It also metabolizes prostaglandin H2 (PGH2) (Km = 11.7 ± 2.8 μM) into malondialdehyde, 12-HHT, and thromboxane A2 (TXA2). The turnover to 12-HHT by human CYP2S1 (1.59 ± 0.04 min−1) is 40-fold higher than that of TXA2 (0.04 min−1). In addition to PGG2 and PGH2 metabolism, human CYP2S1 efficiently metabolizes the hydroperoxyeicosatetraenoic acids (5S-, 12S-, and 15S-) and 13S-hydroperoxyoctadecadienoic acid into 5-oxo-eicosatetraenoic acid (turnover = 16.7 ± 0.3 min−1), 12-oxo-eicosatetraenoic acid 1 (11.5 ± 0.9 min−1), 15-oxo-eicosatetraenoic acid (16.9 ± 0.8 min−1), and 13-octadecadienoic acid (20.2 ± 0.9 min−1), respectively. Other cytochromes P450 such as CYP1A1, 1A2, 1B1, and 3A4 underwent similar conversions but at slower rates. The fatty acid hydroperoxides were also converted by human CYP2S1 to several epoxyalcohols. Our data indicate that fatty acid endoperoxides and hydroperoxides represent endogenous substrates of CYP2S1 and suggest that the enzyme CYP2S1 may play an important role in the inflammatory process because some of the products that CYP2S1 produces play important roles in inflammation.


Molecular Pharmacology | 2009

Fatty Acid Hydroperoxides Support Cytochrome P450 2S1- Mediated Bioactivation of Benzo(a)pyrene-7,8-dihydrodiol

Peter H. Bui; Erin L. Hsu; Oliver Hankinson

In the accompanying report (p. 1031), we showed that a novel dioxin-inducible cytochrome P450, CYP2S1, efficiently metabolizes benzo[a]pyrene-trans-7,8-dihydrodiol (BaP-7,8-diol) into the highly mutagenic and carcinogenic benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide (BaP-diol-t-epoxide), using cumene hydroperoxide in lieu of NADPH/O2. Lipid hydroperoxide-supported P450 oxidation has been reported in several cases. However, it has not yet been described for the bioactivation of BaP-7,8-diol. In this report, we demonstrate that CYP2S1 can use various fatty acid hydroperoxides to support epoxidation of BaP-7,8-diol at a much higher rate than with cumene hydroperoxide. Kinetic analyses with several fatty acid hydroperoxides revealed that 13S-hydroperoxy-9Z,11E-octadecadienoic acid (13-HpODE) was the most potent oxidant tested (Km, 3.4 ± 0.8 μM; turnover, 4.51 ± 0.13 min−1), followed by 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (Km, 2.8 ± 0.7 μM; turnover, 3.7 ± 0.1 min−1), 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (Km, 2.7 ± 0.8 μM; turnover, 3.69 ± 0.09 min−1), and 15S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (Km, 11.6 ± 0.3 μM; turnover, 0.578 ± 0.030 min−1). The antioxidant butylated hydroxyanisole inhibited CYP2S1-catalyzed epoxidation by 100%, suggesting that epoxidation proceeds by a free radical mechanism. Other cytochromes P450, including CYP1A1, CYP1B1, CYP1A2, and CYP3A4, were also able to epoxidize BaP-7,8-diol using various fatty acid hydroperoxides, although at slower rates than CYP2S1. The cytotoxicity of BaP-7,8-diol significantly increased in mammalian cells overexpressing CYP2S1, and BaP-diol-t-epoxide formation in these cells also increased in the presence of 13-HpODE. Together, these results suggest that fatty acid hydroperoxides can serve as physiological cofactors in supporting in vivo CYP2S1-catalyzed oxidation of BaP-7,8-diol, and that fatty acid hydroperoxides and CYP2S1 may play important roles in benzo[a]pyrene-induced carcinogenesis.


Toxicology and Applied Pharmacology | 2012

2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion.

Peter H. Bui; Parrisa Solaimani; Xiaomeng Wu; Oliver Hankinson

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-five eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A(2) to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved.


Drug Metabolism and Disposition | 2008

The Mibefradil Derivative NNC55-0396, a Specific T-Type Calcium Channel Antagonist, Exhibits Less CYP3A4 Inhibition than Mibefradil

Peter H. Bui; Arnulfo Quesada; Adrian Handforth; Oliver Hankinson

A novel mibefradil derivative, NNC55-0396, designed to be hydrolysis-resistant, was shown to be a selective T-type Ca2+ channel inhibitor without L-type Ca2+ channel efficacy. However, its effects on cytochromes P450 (P450s) have not previously been examined. We investigated the inhibitory effects of NNC55-0396 toward seven major recombinant human P450s—CYP3A4, CYP2D6, CYP1A2, CYP2C9, CYP2C8, CYPC19, and CYP2E1—and compared its effects with those of mibefradil and its hydrolyzed metabolite, Ro40-5966. Our results show that CYP3A4 and CYP2D6 are the two P450s most affected by mibefradil, Ro40-5966, and NNC55-0396. Mibefradil (IC50 = 33 ± 3 nM, Ki = 23 ± 0.5 nM) and Ro40-5966 (IC50 = 30 ± 7.8 nM, Ki = 21 ± 2.8 nM) have a 9- to 10-fold greater inhibitory activity toward recombinant CYP3A4 benzyloxy-4-trifluoromethylcoumarin-O-debenzylation activity than NNC55-0396 (IC50 = 300 ± 30 nM, Ki = 210 ± 6 nM). More dramatically, mibefradil (IC50 = 566 ± 71 nM, Ki = 202 ± 39 nM) shows 19-fold higher inhibition of CYP3A-associated testosterone 6β-hydroxylase activity in human liver microsomes compared with NNC55-0396 (IC50 = 11 ± 1.1 μM, Ki = 3.9 ± 0.4 μM). Loss of testosterone 6β-hydroxylase activity by recombinant CYP3A4 was shown to be time- and concentration-dependent with both compounds. However, NNC55-0396 (KI = 3.87 μM, Kinact = 0.061/min) is a much less potent mechanism-based inhibitor than mibefradil (KI = 83 nM, Kinact = 0.048/min). In contrast, NNC55-0396 (IC50 = 29 ± 1.2 nM, Ki = 2.8 ± 0.3 nM) and Ro40-5966 (IC50 = 46 ± 11 nM, Ki = 4.5 ± 0.02 nM) have a 3- to 4-fold greater inhibitory activity toward recombinant CYP2D6 than mibefradil (IC50 = 129 ± 21 nM, Ki = 12.7 ± 0.9 nM). Our results suggest that NNC55–0396 could be a more favorable T-type Ca2+ antagonist than its parent compound, mibefradil, which was withdrawn from the market because of strong inhibition of CYP3A4.


European Journal of Pharmacology | 2011

Comparison of mibefradil and derivative NNC 55-0396 effects on behavior, cytochrome P450 activity, and tremor in mouse models of essential tremor.

Arnulfo Quesada; Peter H. Bui; Gregg E. Homanics; Oliver Hankinson; Adrian Handforth

NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride], is a mibefradil derivative that retains potent in vitro T-type calcium channel antagonist efficacy. We compared the two compounds for behavioral toxicity, effects on cytochrome P450 activity, and efficacy against tremor in the γ-aminobutyric acid type A (GABAA) receptor subunit α1-null mouse, and the harmaline tremor model of essential tremor in wild-type mice. NNC 55-0396 was better tolerated than mibefradil in the horizontal wire test of sedation/motor function, with 3/6 failing at 300 and 30mg/kg respectively. To assess for a potential interaction with harmaline, mice were given the drugs, followed by harmaline or vehicle, and tested 30min later in the inverted wire grid test. Mibefradil exacerbated, whereas NNC 55-0396 ameliorated harmaline-induced test deficits. In mouse liver microsomes, NNC 55-0396 was a less potent inhibitor of harmaline O-demethylation than mibefradil (Ki: 0.95 and 0.29μM respectively), and also less potent at inhibiting testosterone 6-β-hydroxylation (Ki: 0.71 and 0.12μM respectively). In the GABAA α1-null model, NNC 55-0396 but not mibefradil, (each at 20mg/kg), suppressed tremor while NNC 55-0396 at 12.5mg/kg suppressed harmaline-induced tremor by half by 20-100min, whereas mibefradil at the same dose did not significantly affect tremor. In contrast to mibefradil, NNC 55-0396 is well tolerated and suppresses tremor, and exerts less cytochrome P450 inhibition. These results suggest potential clinical utility for NNC 55-0396 or similar derivatives as a T-type calcium antagonist.


American Journal of Medical Genetics Part A | 2013

First report of a de novo 18q11.2 microdeletion including GATA6 associated with complex congenital heart disease and renal abnormalities

Peter H. Bui; Naghmeh Dorrani; Derek Wong; Gregory Perens; Katrina M. Dipple; Fabiola Quintero-Rivera

Deletions of the long arm of chromosome 18 have been previously reported in many patients. Most cases involve the more distal regions of the long arm (18q21.1‐>qter). However, proximal interstitial deletions involving 18q11.2 are extremely rare. Here we report on a 14‐month‐old female with a 4.7 Mb (19,667,062–24,401,876 hg19) de novo interstitial deletion within chromosomal band 18q11.2, which includes GATA6 and 24 other RefSeq genes. The clinical features of our patient include complex congenital heart defects, a double outlet right ventricle, a subaortic ventricular septal defect, D‐malposed great arteries, an atrial septal defect, a dysplastic aortic valve and patent ductus arteriosus. In addition, she had renal anomalies—a duplicated collecting system on the left and mild right hydronephrosis. These heart and renal defects are not reported in other patients with 18q proximal interstitial deletions. Heterozygous point mutations in GATA6, encoding for a zinc finger transcription factor, have been shown to cause congenital heart defects. Given the well‐established biological role of GATA6 in cardiac development, a deletion of GATA6 is very likely responsible for our patients complex congenital heart defects. This is the smallest and most proximal 18q11.2 deletion involving GATA6 that is associated with complex congenital heart disease and renal anomalies.


Toxicology Letters | 2012

CYP2S1 is negatively regulated by corticosteroids in human cell lines

Ilona G. Bebenek; Parrisa Solaimani; Peter H. Bui; Oliver Hankinson

Cytochrome P450s are monooxygenase proteins involved in the metabolism of both exogenous and endogenous compounds. CYP2S1 can metabolize eicosanoids in the absence of both NADPH and NADPH cytochrome P450 reductase, and can also activate the anticancer agent 1 AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxy anthracene-9,10-dione]. CYP2S1 is mainly expressed in extrahepatic tissues such as the trachea, lung, stomach, small intestine, spleen, skin, breast, kidney and placenta. Furthermore, increased expression of CYP2S1 occurs in several tumors of epithelial origin, making the characterization of CYP2S1 regulation relevant to the treatment of disease. We report that the synthetic glucocorticoid receptor ligand dexamethasone (DEX) represses CYP2S1 expression. The ED(50) is between 1 nM and 3 nM and maximal repression is reached by 48 h. Other corticosteroids are also effective at repressing CYP2S1. We show that repression by DEX is mediated by the glucocorticoid receptor and requires histone deacetylase activity.

Collaboration


Dive into the Peter H. Bui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge