Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter H.G.M. Willems is active.

Publication


Featured researches published by Peter H.G.M. Willems.


Annals of Neurology | 2008

Mitochondrial function and morphology are impaired in parkin mutant fibroblasts

Heather Mortiboys; Kelly Jean Thomas; Werner J.H. Koopman; Stefanie Klaffke; Patrick M. Abou-Sleiman; S. E. Olpin; Nicholas W. Wood; Peter H.G.M. Willems; Jan A.M. Smeitink; Mark R. Cookson; Oliver Bandmann

There are marked mitochondrial abnormalities in parkin‐knock‐out Drosophila and other model systems. The aim of our study was to determine mitochondrial function and morphology in parkin‐mutant patients. We also investigated whether pharmacological rescue of impaired mitochondrial function may be possible in parkin‐mutant human tissue.


Brain | 2008

Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease

Felix Distelmaier; Werner J.H. Koopman; Lambertus van den Heuvel; Richard J. Rodenburg; Ertan Mayatepek; Peter H.G.M. Willems; Jan A.M. Smeitink

Mitochondria are essential for cellular bioenergetics by way of energy production in the form of ATP through the process of oxidative phosphorylation. This crucial task is executed by five multi-protein complexes of which mitochondrial NADH:ubiquinone oxidoreductase or complex I is the largest and most complicated one. During recent years, mutations in nuclear genes encoding structural subunits of complex I have been identified as a cause of devastating neurodegenerative disorders with onset in early childhood. Here, we present a comprehensive overview of clinical, biochemical and cell physiological information of 15 children with isolated, nuclear-encoded complex I deficiency, which was generated in a joint effort of clinical and fundamental research. Our findings point to a rather homogeneous clinical picture in these children and drastically illustrate the severity of the disease. In extensive live cell studies with patient-derived skin fibroblasts we uncovered important cell physiological aspects of complex I deficiency, which point to a central regulatory role of cellular reactive oxygen species production and altered mitochondrial membrane potential in the pathogenesis of the disorder. Moreover, we critically discuss possible interconnections between clinical signs and cellular pathology. Finally, our results indicate apparent differences to drug therapy on the cellular level, depending on the severity of the catalytic defect and identify modulators of cellular Ca(2+) homeostasis as new candidates in the therapy of complex I deficiency.


Cell Metabolism | 2010

Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

Jessica Nouws; Leo Nijtmans; Sander M. Houten; Mariël van den Brand; Martijn A. Huynen; Hanka Venselaar; Saskia J.G. Hoefs; Jolein Gloerich; Jonathan B. Kronick; Timothy P Hutchin; Peter H.G.M. Willems; Richard J. Rodenburg; Lambert van den Heuvel; Jan A.M. Smeitink; Rutger O. Vogel

Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondrial beta oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid oxidation, we describe a role for ACAD9 in oxidative phosphorylation. ACAD9 binds complex I assembly factors NDUFAF1 and Ecsit and is specifically required for the assembly of complex I. Furthermore, ACAD9 mutations result in complex I deficiency and not in disturbed long-chain fatty acid oxidation. This strongly contrasts with its evolutionary ancestor VLCAD, which we show is not required for complex I assembly and clearly plays a role in fatty acid oxidation. Our results demonstrate that two closely related metabolic enzymes have diverged at the root of the vertebrate lineage to function in two separate mitochondrial metabolic pathways and have clinical implications for the diagnosis of complex I deficiency.


American Journal of Human Genetics | 2009

Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease

Ann Saada; Rutger O. Vogel; Saskia J.G. Hoefs; Mariël van den Brand; Hans Wessels; Peter H.G.M. Willems; Hanka Venselaar; Avraham Shaag; Flora Barghuti; Orit Reish; Mordechai Shohat; Martijn A. Huynen; Jan A.M. Smeitink; Lambert van den Heuvel; Leo Nijtmans

Mitochondrial complex I deficiency is the most prevalent and least understood disorder of the oxidative phosphorylation system. The genetic cause of many cases of isolated complex I deficiency is unknown because of insufficient understanding of the complex I assembly process and the factors involved. We performed homozygosity mapping and gene sequencing to identify the genetic defect in five complex I-deficient patients from three different families. All patients harbored mutations in the NDUFAF3 (C3ORF60) gene, of which the pathogenic nature was assessed by NDUFAF3-GFP baculovirus complementation in fibroblasts. We found that NDUFAF3 is a genuine mitochondrial complex I assembly protein that interacts with complex I subunits. Furthermore, we show that NDUFAF3 tightly interacts with NDUFAF4 (C6ORF66), a protein previously implicated in complex I deficiency. Additional gene conservation analysis links NDUFAF3 to bacterial-membrane-insertion gene cluster SecF/SecD/YajC and to C8ORF38, also implicated in complex I deficiency. These data not only show that NDUFAF3 mutations cause complex I deficiency but also relate different complex I disease genes by the close cooperation of their encoded proteins during the assembly process.


FEBS Journal | 2005

Human mitochondrial complex I assembly is mediated by NDUFAF1

Rutger O. Vogel; Rolf J.R.J. Janssen; Cristina Ugalde; Melissa Grovenstein; Richard Huijbens; Henk Jan Visch; Lambert van den Heuvel; Peter H.G.M. Willems; Massimo Zeviani; Jan A.M. Smeitink; Leo Nijtmans

Complex I (NADH:ubiquinone oxidoreductase) is the largest multiprotein enzyme of the oxidative phosphorylation system. Its assembly in human cells is poorly understood and no proteins assisting this process have yet been described. A good candidate is NDUFAF1, the human homologue of Neurospora crassa complex I chaperone CIA30. Here, we demonstrate that NDUFAF1 is a mitochondrial protein that is involved in the complex I assembly process. Modulating the intramitochondrial amount of NDUFAF1 by knocking down its expression using RNA interference leads to a reduced amount and activity of complex I. NDUFAF1 is associated to two complexes of 600 and 700u2003kDa in size of which the relative distribution is altered in two complex I deficient patients. Analysis of NDUFAF1 expression in a conditional complex I assembly system shows that the 700u2003kDa complex may represent a key step in the complex I assembly process. Based on these data, we propose that NDUFAF1 is an important protein for the assembly/stability of complex I.


Cytometry Part A | 2006

Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts

Werner J.H. Koopman; Henk-Jan Visch; Jan A.M. Smeitink; Peter H.G.M. Willems

Understanding the interdependence of mitochondrial and cellular functioning in health and disease requires detailed knowledge about the coupling between mitochondrial structure, motility, and function. Currently, no rapid approach is available for simultaneous quantification of these parameters in single living cells.


Biochimica et Biophysica Acta | 2010

Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells

Marleen Forkink; Jan A.M. Smeitink; Roland Brock; Peter H.G.M. Willems; Werner J.H. Koopman

Reactive oxygen species (ROS) are formed upon incomplete reduction of molecular oxygen (O2) as an inevitable consequence of mitochondrial metabolism. Because ROS can damage biomolecules, cells contain elaborate antioxidant defense systems to prevent oxidative stress. In addition to their damaging effect, ROS can also operate as intracellular signaling molecules. Given the fact that mitochondrial ROS appear to be only generated at specific sites and that particular ROS species display a unique chemistry and have specific molecular targets, mitochondria-derived ROS might constitute local regulatory signals. The latter would allow individual mitochondria to auto-regulate their metabolism, shape and motility, enabling them to respond autonomously to the metabolic requirements of the cell. In this review we first summarize how mitochondrial ROS can be generated and removed in the living cell. Then we discuss experimental strategies for (local) detection of ROS by combining chemical or proteinaceous reporter molecules with quantitative live cell microscopy. Finally, approaches involving targeted pro- and antioxidants are presented, which allow the local manipulation of ROS levels.


Methods | 2008

Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling

Werner J.H. Koopman; Felix Distelmaier; John J. Esseling; Jan A.M. Smeitink; Peter H.G.M. Willems

Mitochondria are crucial for many aspects of cellular homeostasis and a sufficiently negative membrane potential (Deltapsi) across the mitochondrial inner membrane (MIM) is required to sustain most mitochondrial functions including ATP generation, MIM fusion, and calcium uptake and release. Here, we present a microscopy approach for automated quantification of Deltapsi and mitochondrial position, shape and calcium handling in individual living cells. In the base protocol, cells are stained with tetramethyl rhodamine methyl ester (TMRM), a fluorescent cation that accumulates in the mitochondrial matrix according to Deltapsi, and visualized using video-microscopy. Next, the acquired images are processed to generate a mitochondria-specific binary image (mask) allowing simultaneous quantification of mitochondrial TMRM fluorescence intensity, shape and position. In a more advanced version of this protocol a mitochondria-targeted variant of green fluorescent protein (mitoAcGFP1) is expressed to allow mask making in TMRM-stained cells. The latter approach allows quantification of Deltapsi in cells with a substantially depolarized Deltapsi. For automated quantification of mitochondrial calcium handling in space and time mitoAcGFP1-expressing cells are stained with rhod-2, a fluorescent calcium indicator that accumulates in the mitochondrial matrix. In this paper, a detailed step-by-step description of the above approaches and its pitfalls is provided.


Journal of Biological Chemistry | 2006

The Coxsackievirus 2B Protein Increases Efflux of Ions from the Endoplasmic Reticulum and Golgi, thereby Inhibiting Protein Trafficking through the Golgi

A.S. de Jong; Henk-Jan Visch; F.P. de Mattia; M.M. van Dommelen; H.G.P. Swarts; T. Luyten; G. Callewaert; W.J.G. Melchers; Peter H.G.M. Willems; F.J.M. van Kuppeveld

Coxsackievirus infection leads to a rapid reduction of the filling state of the endoplasmic reticulum (ER) and Golgi Ca2+ stores. The coxsackievirus 2B protein, a small membrane protein that localizes to the Golgi and to a lesser extent to the ER, has been proposed to play an important role in this effect by forming membrane-integral pores, thereby increasing the efflux of Ca2+ from the stores. Here, evidence is presented that supports this idea and that excludes the possibility that 2B reduces the uptake of Ca2+ into the stores. Measurement of intra-organelle-free Ca2+ in permeabilized cells revealed that the ability of 2B to reduce the Ca2+ filling state of the stores was preserved at steady ATP. Biochemical analysis in a cell-free system further showed that 2B had no adverse effect on the activity of the sarco/endoplasmic reticulum calcium ATPase, the Ca2+-ATPase that transports Ca2+ from the cytosol into the stores. To investigate whether 2B specifically affects Ca2+ homeostasis or other ion gradients, we measured the lumenal Golgi pH. Expression of 2B resulted in an increased Golgi pH, indicative for the efflux of H+ from the Golgi lumen. Together, these data support a model that 2B increases the efflux of ions from the ER and Golgi by forming membrane-integral pores. We have demonstrated that a major consequence of this activity is the inhibition of protein trafficking through the Golgi complex.


Cytometry Part A | 2008

Life cell quantification of mitochondrial membrane potential at the single organelle level.

Felix Distelmaier; Werner J.H. Koopman; Epifania R. Testa; Arjan S. de Jong; Herman G. Swarts; Ertan Mayatepek; Jan A.M. Smeitink; Peter H.G.M. Willems

Mitochondrial membrane potential (Δψ) is key to mitochondrial function and cellular survival. Here, we aimed to develop an automated protocol allowing sensitive quantification of Δψ in living cells at the level of individual mitochondria. Human skin fibroblasts were stained with the fluorescent cation tetramethyl rhodamine methyl ester (TMRM), which is sequestered by mitochondria according to their Δψ. Cells were visualized by videomicroscopy and the acquired images were processed to generate a mitochondria‐specific mask. The latter was superimposed on the original image to allow quantification of TMRM fluorescence. Following validation, our approach revealed that mitochondria with different Δψ coexisted within the same cell. Furthermore, our method allowed reproducible detection of small (<10%) reductions in TMRM intensity induced by the complex III inhibitor antimycin A. Mitochondrial uncoupling by p‐trifluoromethoxy carbonyl cyanide phenyl hydrazone (FCCP) greatly reduced mitochondrial TMRM fluorescence. Under these conditions faithful mask calculation and TMRM intensity analysis were still possible using a mitochondria‐targeted green fluorescence protein (mitoAcGFP1), expressed in the cells using baculoviral transfection.

Collaboration


Dive into the Peter H.G.M. Willems's collaboration.

Top Co-Authors

Avatar

Werner J.H. Koopman

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Jan A.M. Smeitink

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Leo Nijtmans

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Herman G. Swarts

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Jan B. Koenderink

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Federica Valsecchi

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.J.H.H.M. De Pont

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sjenet E. van Emst-de Vries

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge