Peter H.M. Klaren
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter H.M. Klaren.
The Journal of Membrane Biology | 1992
Theo J. M. Schoenmakers; Peter H.M. Klaren; Gert Flik; R.A.C. Lock; Peter K. T. Pang; Sjoerd E. Wendelaar Bonga
SummaryThe inhibition of Ca2−-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a Km for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 μm Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na− +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (Ki = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the Ki of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.
AMB Express | 2011
Maartje A. H. J. van Kessel; Bas E. Dutilh; Kornelia Neveling; Michael P. Kwint; Joris A. Veltman; Gert Flik; Mike S. M. Jetten; Peter H.M. Klaren; Huub J. M. Op den Camp
The microbes in the gastrointestinal (GI) tract are of high importance for the health of the host. In this study, Roche 454 pyrosequencing was applied to a pooled set of different 16S rRNA gene amplicons obtained from GI content of common carp (Cyprinus carpio) to make an inventory of the diversity of the microbiota in the GI tract. Compared to other studies, our culture-independent investigation reveals an impressive diversity of the microbial flora of the carp GI tract. The major group of obtained sequences belonged to the phylum Fusobacteria. Bacteroidetes, Planctomycetes and Gammaproteobacteria were other well represented groups of micro-organisms. Verrucomicrobiae, Clostridia and Bacilli (the latter two belonging to the phylum Firmicutes) had fewer representatives among the analyzed sequences. Many of these bacteria might be of high physiological relevance for carp as these groups have been implicated in vitamin production, nitrogen cycling and (cellulose) fermentation.
Fish Physiology | 2009
Nicholas J. Bernier; Gert Flik; Peter H.M. Klaren
Publisher Summary This chapter discusses the regulatory pathways, the targets, the functions, and the interactions among the corticotropic, melanotropic, and thyrotropic axes, and the evidence that implicates each axis in the stress response. Multiple hypothalamic factors are involved in the regulation of the secretions from the corticotrope, melanotrope, and thyrotrope pituitary cells in fishes. Among these factors, corticotropin‐releasing factor (CRF) and thyrotropin‐releasing hormone (TRH) stimulate, and dopamine generally inhibits the secretions from all three hypothalamo–pituitary axes. The CRF system also plays a master role in the regulation of the endocrine response to stressors. In general, the contributions of the corticotropic, melanotropic, and thyrotropic axes to the stress response are species‐specific and depend on the challenge imposed on the system, its duration, and the homeostatic resilience of the fish. Multiple interactions and feedback effects have been identified among these endocrine axes. In the chapter it has been postulated that the extensive multidirectional communication as well as the cross‐talk among the corticotropic, melanotropic, and thyrotropic axes forms a “stress web” that exerts well‐concerted actions on energy metabolism as its prime task.
Toxicology Letters | 1996
J. Li; R.A.C. Lock; Peter H.M. Klaren; H.G.P. Swarts; F.M.A.H. Schuurmans Stekhoven; S.E. Wendelaar Bonga; G. Flik
The interaction of Cu2+ with enzymatic activity of rabbit kidney Na+/K(+)-ATPase was studied in media with buffered, defined free Cu2+ levels. The IC50-values are 0.1 mumol/l for Na+/K(+)-ATPase and 1 mumol/l for K(+)-pNPPase. Dithiothreitol (DTT) reverses the inhibitory effect of Cu2+ in vitro. Cu2+ exerts non-competitive effects on the enzyme with respect to Na+, K+, ATP or pNPP, but has a mixed-type inhibitory effect with respect to Mg2+. It is concluded that the appreciation of the inhibitory effect of Cu2+ on this enzyme requires carefully composed assay media that include a buffer for Cu2+, and that the IC50-values calculated according to this model indicate that Cu2+ may be more toxic than previously anticipated.
Endocrinology | 2011
Francisco J. Arjona; Erik de Vrieze; Theo J. Visser; Gert Flik; Peter H.M. Klaren
Most components of the thyroid system in bony fish have been described and characterized, with the notable exception of thyroid hormone membrane transporters. We have cloned, sequenced, and expressed the zebrafish solute carrier Slc16a2 (also named monocarboxylate transporter Mct8) cDNA and established its role as a thyroid hormone transport protein. The cloned cDNA shares 56-57% homology with its mammalian orthologs. The 526-amino-acid sequence contains 12 predicted transmembrane domains. An intracellular N-terminal PEST domain, thought to be involved in proteolytic processing of the protein, is present in the zebrafish sequence. Measured at initial rate and at the body/rearing temperature of zebrafish (26 C), T(3) uptake by zebrafish Slc16a2 is a saturable process with a calculated Michaelis-Menten constant of 0.8 μM T(3). The rate of T(3) uptake is temperature dependent and Na(+) independent. Interestingly, at 26 C, zebrafish Slc16a2 does not transport T(4). This implies that at a normal body temperature in zebrafish, Slc16a2 protein is predominantly involved in T(3) uptake. When measured at 37 C, zebrafish Slc16a2 transports T(4) in a Na(+)-independent manner. In adult zebrafish, the Slc16a2 gene is highly expressed in brain, gills, pancreas, liver, pituitary, heart, kidney, and gut. Beginning from the midblastula stage, Slc16a2 is also expressed during zebrafish early development, the highest expression levels occurring 48 h after fertilization. This is the first direct evidence for thyroid hormone membrane transporters in fish. We suggest that Slc16a2 plays a key role in the local availability of T(3) in adult tissues as well as during the completion of morphogenesis of primary organ systems.
General and Comparative Endocrinology | 2011
Yvette S. Wunderink; Steef Engels; Silke Halm; Manuel Yúfera; Gonzalo Martínez-Rodríguez; Gert Flik; Peter H.M. Klaren; Juan Miguel Mancera
The hypothalamus-pituitary-interrenal (HPI) axis is pivotal in the endocrine stress response of fish. Hypothalamic corticotropin-releasing hormone (CRH) initiates the endocrine stress response and stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary pars distalis, which in turn activates cortisol production and release by the interrenal cells of the head kidney. CRH activity depends on the levels of a specific CRH binding protein (CRH-BP). We have characterized the cDNAs coding for CRH and CRH-BP in Senegalese sole (Solea senegalensis) and investigated their mRNA expression in juveniles that were submitted to a protocol that involved exposure to a chronic stressor (viz. increased cultivation densities) followed by an acute stressor (viz. transfer to increased ambient salinity). Juveniles were cultivated at three densities (1.9, 4.7 and 9.8 kg/m(2)) for 33 days, and then exposed to an osmotic challenge that involved transfer from seawater (39‰ salinity, SW) to hypersaline seawater (55‰, HSW). The highest density imposed stress as indicated by elevated cortisol levels and CRH mRNA expression compared to fish stocked at low density. Fish kept at high density differentially responded to a posterior transfer to HSW; no cortisol or CRH response was seen, but osmoregulatory and metabolic parameters were affected. No differences in CRH-BP mRNA expression levels were found at different stocking densities; transfer to HSW enhanced expression in both low and high density stocked animals, suggesting that CRH-BP acts as a modulator of the acute stress response, not so of the chronic stress response. We conclude that stocking of Senegalese sole at high density is a stressful condition that may compromise the capacity to cope with subsequent stressors.
Journal of Endocrinology | 2009
Edwin J. W. Geven; Gert Flik; Peter H.M. Klaren
In teleostean fishes the hypothalamic-pituitary-thyroid axis (HPT axis) and the hypothalamic-pituitary-interrenal axis (HPI axis) regulate the release of thyroid hormones (THs) and cortisol respectively. Since many actions of both hormones are involved in the regulation of metabolic processes, communication between both signal pathways can be anticipated. In this study, we describe central and peripheral sites for direct interaction between mediators of both neuroendocrine axes in the common carp (Cyprinus carpio). Despite suggestions in the literature that CRH is thyrotropic in some fish; we were not able to establish stimulatory effects of CRH on the expression of the pituitary TSHbeta subunit gene. In preoptic area tissue incubated with 10(-7) M thyroxine (T(4)) a 2 x 9-fold increase in the expression of CRH-binding protein (CRHBP) was observed. Thus, T(4) could reduce the bioavailable hypothalamic crh via the up regulation of crhbp expression and hence down regulate the HPI axis. At the peripheral level, cortisol (10(-6) M), ACTH (10(-7) M), and alpha-MSH (10(-7) M) stimulate the release of T(4) from kidney and head kidney fragments, which contain all functional thyroid follicles in carp, by two- to fourfold. The substantiation of three pituitary thyrotropic factors, viz. TSH, ACTH, and alpha-MSH, in common carp, allows for an integration of central thyrotropic signals. Clearly, two sites for interaction between the HPT axis, the HPI axis, and alpha-MSH are present in common carp. These interactions may be key to the proper regulation of general metabolism in this fish.
The Journal of Membrane Biology | 1993
Peter H.M. Klaren; Gert Flik; R.A.C. Lock; Sjoerd E. Wendelaar Bonga
SummaryBrush border membranes were isolated from tilapia (Oreochromis mossambicus) intestine by the use of magnesium precipitation and differential centrifugation. The membrane preparation was enriched 17-fold in alkaline phosphatase. The membranes were 99% right-side-out oriented as indicated by the unmasking of latent glyceraldehyde-3-phosphate dehydrogenase and acetylcholine esterase activity by detergent treatment. The transport of Ca+2 in brush border membrane vesicles was analyzed. A saturable and a nonsaturable component in the uptake of Ca+2 was resolved. The saturable component is characterized by a Km much lower than the Ca+2 concentrations predicted to occur in the intestinal lumen. The nonsaturable component displays a Ca+2 permeability too high to be explained by simple diffusion. We discuss the role of the saturable component as the rate-limiting step in transmembrane Ca+2 movement, and suggest that the nonsaturable component reflects a transport mechanism operating well below its level of saturation.
Endocrinology | 2014
Erik de Vrieze; Sandra M. W. van de Wiel; Jan Zethof; Gert Flik; Peter H.M. Klaren; Francisco J. Arjona
Allan-Herndon-Dudley syndrome (AHDS) is an inherited disorder of brain development characterized by severe psychomotor retardation. This X-linked disease is caused by mutations in the monocarboxylate transporter 8 (MCT8), an important thyroid hormone transporter in brain neurons. MCT8-knockout mice lack the 2 major neurological symptoms of AHDS, namely locomotor problems and cognitive impairment. The pathological mechanism explaining the symptoms is still obscure, and no cure for this condition is known. The development of an animal model that carries MCT8-related neurological symptoms is warranted. We have employed morpholino-based gene knockdown to create zebrafish deficient for mct8. Knockdown of mct8 results in specific symptoms in the thyroid axis and brain. The mct8-morphants showed impaired locomotor behavior and brain development. More specifically, we observed maldevelopment of the cerebellum and mid-hindbrain boundary and apoptotic clusters in the zebrafish brain. The mRNA expression of zebrafish orthologs of mammalian TSH, thyroid hormone transporters, and deiodinases was altered in mct8 morphants. In particular, deiodinase type 3 gene expression was consistently up-regulated in zebrafish mct8 morphants. The thyroid hormone metabolite tetrac, but not T3, partly ameliorated the affected phenotype and locomotion disability of morphant larvae. Our results show that mct8 knockdown in zebrafish larvae results in disturbances in the thyroid axis, brain, and locomotion behavior, which is congruent with the clinical aspect of impaired locomotion and cognition in patients with AHDS. Taken together, the zebrafish is a suitable animal model for the study of the pathophysiology of AHDS.
General and Comparative Endocrinology | 2012
Yvette S. Wunderink; Erik de Vrieze; Juriaan R. Metz; Silke Halm; Gonzalo Martínez-Rodríguez; Gert Flik; Peter H.M. Klaren; Juan Miguel Mancera
The precursor protein proopiomelanocortin (POMC) gives rise to a variety of biologically active peptides through cell-specific posttranslational processing. Two transcripts of pomc were found in the flatfish Solea senegalensis (ssePOMC-A and ssePOMC-B), that most likely represent subfunctionalized paralogues: ssePOMC-A lacks the N-terminal cleavage site for β-MSH, whereas ssePOMC-B cannot yield ACTH and completely lacks the opioid consensus sequence in the β-END region. An analysis of nucleotide substitution rates shows that the POMC-derived peptides possess well-conserved regions under purifying selection, except the β-END derived from POMC-B, which has undergone positive selection. The calculated K(s) values for ssePOMC-A versus ssePOMC-B and zebrafish POMCαversus zebrafish POMCβ are 0.40 and 0.72, respectively, indicating that the zebrafish POMC paralogues started to evolve almost twice as early in evolution, and that the Solea POMC paralogues arose independently from the whole genome duplication event that gave rise to the zebrafish paralogues. This makes ssePOMC-B the first identified POMCα orthologue that lacks the opioid consensus. Furthermore, pomc-a expression is down-regulated in chronic stressed S. senegalensis juveniles, whereas pomc-b expression levels remain unaffected, indicating different physiological roles for both POMC paralogues. The distribution of functional POMC-derived peptide hormones over two pomc genes in S. senegalensis suggests subfunctionalization of the paralogues, a relevant notion when studying POMC function in endocrine responses.