Peter H. Poole
St. Francis Xavier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter H. Poole.
Physical Review Letters | 1997
Walter Kob; Claudio Donati; Steven J. Plimpton; Peter H. Poole; Sharon C. Glotzer
We present the results of a molecular dynamics computer simulation study in which we investigate whether a supercooled Lennard-Jones liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian parameter for the self part of the van Hove correlation function and use it to identify {open_quotes}mobile{close_quotes} particles. We find that these particles form clusters whose sizes grow with decreasing temperature. We also find that the relaxation time of the mobile particles is significantly shorter than that of the average particle, and that this difference increases with decreasing temperature. {copyright} {ital 1997} {ital The American Physical Society}
Nature | 2001
Ivan Saika-Voivod; Peter H. Poole; Francesco Sciortino
Liquid silica is the archetypal glass former, and compounds based on silica are ubiquitous as natural and man-made amorphous materials. Liquid silica is also the extreme case of a ‘strong’ liquid, in that the variation of viscosity with temperature closely follows the Arrhenius law as the liquid is cooled toward its glass transition temperature. In contrast, most liquids are to some degree ‘fragile’, showing significantly faster increases in their viscosity as the glass transition temperature is approached. Recent studies have demonstrated the controlling influence of the potential energy hypersurface (or ‘energy landscape’) of the liquid on the transport properties near the glass transition. But the origin of strong liquid behaviour in terms of the energy landscape has not yet been resolved. Here we study the static and dynamic properties of liquid silica over a wide range of temperature and density using computer simulations. The results reveal a change in the energy landscape with decreasing temperature, which underlies a transition from a fragile liquid at high temperature to a strong liquid at low temperature. We also show that a specific heat anomaly is associated with this fragile-to-strong transition, and suggest that this anomaly is related to the polyamorphic behaviour of amorphous solid silica.
Physical Review E | 2000
Ivan Saika-Voivod; Francesco Sciortino; Peter H. Poole
We conduct extensive molecular dynamics computer simulations of two models for liquid silica [the model of Woodcock, Angell and Cheeseman, J. Phys. Chem. 65, 1565 (1976); and that of van Beest, Kramer, and van Santen, Phys. Rev. Lett. 64, 1955 (1990)] to determine their thermodynamic properties at low temperature T across a wide density range. We find for both models a wide range of states in which isochores of the potential energy U are a linear function of T(3/5), as recently proposed for simple liquids [Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998)]. We exploit this behavior to fit an accurate equation of state to our thermodynamic data. Extrapolation of this equation of state to low T predicts the occurrence of a liquid-liquid phase transition for both models. We conduct simulations in the region of the predicted phase transition, and confirm its existence by direct observation of phase separating droplets of atoms with distinct local density and coordination environments.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Dazhi Liu; Yang Zhang; Chia-Cheng Chen; Chung-Yuan Mou; Peter H. Poole; Sow-Hsin Chen
Small angle neutron scattering (SANS) is used to measure the density of heavy water contained in 1D cylindrical pores of mesoporous silica material MCM-41-S-15, with pores of diameter of 15 ± 1 Å. In these pores the homogenous nucleation process of bulk water at 235 K does not occur, and the liquid can be supercooled down to at least 160 K. The analysis of SANS data allows us to determine the absolute value of the density of D2O as a function of temperature. We observe a density minimum at 210 ± 5 K with a value of 1.041 ± 0.003 g/cm3. We show that the results are consistent with the predictions of molecular dynamics simulations of supercooled bulk water. Here we present an experimental report of the existence of the density minimum in supercooled water, which has not been described previously.
Journal of Physics: Condensed Matter | 2005
Peter H. Poole; Ivan Saika-Voivod; Francesco Sciortino
We present a high-resolution computer simulation study of the equation of state of ST2 water, evaluating the liquid-state properties at 2718 state points, and precisely locating the liquid–liquid critical point (LLCP) occurring in this model. We are thereby able to reveal the interconnected set of density anomalies, spinodal instabilities and response function extrema that occur in the vicinity of an LLCP for the case of a realistic, off-lattice model of a liquid with local tetrahedral order. In particular, we unambiguously identify a density minimum in the liquid state, define its relationship to other anomalies, and show that it arises due to the approach of the liquid structure to a defect-free random tetrahedral network of hydrogen bonds.
Il Nuovo Cimento D | 1994
C. A. Angell; Peter H. Poole; Jun Shao
SummaryGlass formation in nature and materials science is reviewed and the recent recognition of polymorphism within the glassy state, polyamorphism, is discussed. The process by which the glassy state originates during the continuous cooling or viscous slowdown process, is examined and the three canonical characteristics of relaxing liquids are correlated through the fragility. The conversion of strong liquids to fragile liquids by pressure-induced coordination number increases is discussed, and then it is shown that for the same type of system it is possible to have the same conversion accomplished via a first-order transition within the liquid state. The systems in which this can happen are of the same type which exhibit polyamorphism, and the whole phenomenology can be accounted for by a recent simple modification of the van der Waals model for tetrahedrally bonded liquids. The concept of complex amorphous systems which can lose a significant number of degrees of freedom through weak first-order transitions is then used to discuss the relation between native and denatured hydrated proteins, since the latter have much in common with plasticized chain polymer systems. Finally, we close the circle by taking a short-time-scale phenomenon given much attention by protein physicists,viz., the onset of an anomaly in the Debye-Waller factor with increasing temperature, and showing that for a wide variety of liquids, including computer-simulated strong and fragile ionic liquids, this phenomenon is closely correlated with the experimental glass transition temperature. This implies that the latter owes its origin to the onset of strong anharmonicity in certain components of the vibrational density of states (evidently related to the boson peak) which then permits the system to gain access to its configurational degrees of freedom. The more anharmonic these vibrational components, the closer to the Kauzmann temperature will commence the exploration of configuration space and, for a given configurational microstate degeneracy, the more fragile the liquid will be.
Journal of Chemical Physics | 1997
S. T. Harrington; Peter H. Poole; Francesco Sciortino; H. Eugene Stanley
We carry out extensive molecular dynamics simulations in order to evaluate the thermodynamic equation of state of the extended simple point charge model of water (customarily described by the acronym SPC/E) over a wide range of temperature and density, with emphasis on the supercooled region. We thereby determine the location of the temperature of maximum density (TMD) line and the liquid spinodal line. In particular, we find that the experimental TMD line lies between the TMD lines of the SPC/E and ST2 models of water, so perhaps the behavior of these two models of simulated water “bracket” the behavior of real water. As temperature decreases, we find (i) that maxima appear in isotherms of the isothermal compressibility as a function of density, (ii) that isotherms of the internal energy as a function of volume display negative curvature and (iii) that the pressure of the liquid–vapor spinodal decreases. We compare the results to corresponding behavior found from simulations of the ST2 model of water and...
Journal of Chemical Physics | 2013
Peter H. Poole; Richard K. Bowles; Ivan Saika-Voivod; Francesco Sciortino
We carry out umbrella sampling Monte Carlo simulations to evaluate the free energy surface of the ST2 model of water as a function of two order parameters, the density and a bond-orientational order parameter. We approximate the long-range electrostatic interactions of the ST2 model using the reaction-field method. We focus on state points in the vicinity of the liquid-liquid critical point proposed for this model in earlier work. At temperatures below the predicted critical temperature we find two basins in the free energy surface, both of which have liquid-like bond orientational order, but differing in density. The pressure and temperature dependence of the shape of the free energy surface is consistent with the assignment of these two basins to the distinct low density and high density liquid phases previously predicted to occur in ST2 water.
Physical Review Letters | 1999
Claudio Donati; Sharon C. Glotzer; Peter H. Poole
We define a correlation function that quantifies the spatial correlation of single-particle displacements in liquids and amorphous materials. We show that for an equilibrium liquid this function is related to fluctuations in a bulk dynamical variable. We evaluate this function using computer simulations of an equilibrium glass-forming liquid, and show that long range spatial correlations of displacements emerge and grow on cooling toward the mode coupling critical temperature. [S0031-9007(99)09452-1] Liquids cooled toward their glass transition exhibit remarkable dynamical behavior [1]. The initial slowing of transport processes for liquids at temperatures T well above their glass transition temperature Tg is described by the mode coupling theory (MCT) [2], which predicts diverging relaxation times at a dynamical critical temperature Tc (in real and simulated liquids, this divergence is only apparent). The dynamical singularity of MCT occurs without a corresponding growing static correlation length associated with density or composition fluctuations [3]. Yet recent studies show that in the range of T described by MCT, simulated glass-forming liquids exhibit spatially heterogeneous dynamics [4 ‐6]. In this Letter, we define a correlation function that quantifies the spatial correlation of particle displacements and evaluate this function for a Lennard-Jones liquid. We find that spatial correlations of displacement arise and become long ranged on cooling toward Tc. First, we briefly review the conventional static correla
Physical Chemistry Chemical Physics | 2011
Francesco Sciortino; Ivan Saika-Voivod; Peter H. Poole
We perform successive umbrella sampling grand canonical Monte Carlo computer simulations of the original ST2 model of water in the vicinity of the proposed liquid-liquid critical point, at temperatures above and below the critical temperature. Our results support the previous work of Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti [J. Chem. Phys., 2009, 131, 104508], who provided evidence for the existence and location of the critical point for ST2 using the Ewald method to evaluate the long-range forces. Our results therefore demonstrate the robustness of the evidence for critical behavior with respect to the treatment of the electrostatic interactions. In addition, we verify that the liquid is equilibrated at all densities on the Monte Carlo time scale of our simulations, and also that there is no indication of crystal formation during our runs. These findings demonstrate that the processes of liquid-state relaxation and crystal nucleation are well separated in time. Therefore, the bimodal shape of the density of states, and hence the critical point itself, is a purely liquid-state phenomenon that is distinct from the crystal-liquid transition.