Peter Hafkemeyer
Uniformed Services University of the Health Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Hafkemeyer.
Journal of Biological Chemistry | 2003
Nazli Maki; Peter Hafkemeyer; Saibal Dey
The human multidrug transporter P-glycoprotein (Pgp, ABCB1) contributes to the poor bioavailability of many anticancer and antimicrobial agents as well as to drug resistance at the cellular level. For rational design of effective Pgp inhibitors, a clear understanding of its mechanism of action and functional regulation is essential. In this study, we demonstrate that inhibition of Pgp-mediated drug transport bycis-(Z)-flupentixol, a thioxanthene derivative, occurs through an allosteric mechanism. Unlike competitive inhibitors, such as cyclosporin A and verapamil,cis-(Z)-flupentixol does not interfere with substrate ([125I]iodoarylazidoprazosin) recognition by Pgp, instead it prevents substrate translocation and dissociation, resulting in a stable but reversible Pgp-substrate complex.cis-(Z)-Flupentixol-induced complex formation requires involvement of the Pgp substrate site, because agents that either physically compete (cyclosporin A) for or indirectly occlude (vanadate) the substrate-binding site prevent formation of the complex. Allosteric modulation by cis-(Z)-flupentixol involves a conformational change in Pgp detectable by monoclonal antibody UIC2 binding to a conformation-sensitive external epitope of Pgp. The conformational change observed is distinct from that induced by Pgp substrates or competitive inhibitors. A single amino acid substitution (F983A) in TM12 of Pgp that impairs inhibition bycis-(Z)-flupentixol of Pgp-mediated drug transport also affects stabilization of the Pgp-substrate complex as well as the characteristic conformational change. Taken together, our results describe the molecular mechanism by which the Pgp modulatorcis-(Z)-flupentixol allosterically inhibits drug transport.
Biochemistry | 1998
Peter Hafkemeyer; Saibal Dey; Suresh V. Ambudkar; Christine A. Hrycyna; Ira Pastan; Michael M. Gottesman
P-glycoprotein (Pgp), the product of the MDR1 gene, confers multidrug resistance on cancer cells by ATP-dependent extrusion of anticancer drugs. Biochemical and genetic studies with Pgp have identified the putative transmembrane (TM) region 12 (residues 974-994) as a major region involved in drug interactions with amino acid residues conserved among Pgp family members shown to be essential for transport. To determine whether nonconserved residues might be involved in substrate specificity, seven amino acid residues were identified within TM 12 that were not strictly conserved among the MDR1 and MDR2 family of proteins from different mammalian species. We replaced all seven of these amino acid residues with alanine, one at a time and in combinations, and used a vaccinia virus based transient expression system to analyze function. None of the single replacements caused any alteration in transport function. However, when residues L975, V981, and F983 were replaced collectively, drug transport, drug-stimulated ATP hydrolysis, and photoaffinity labeling with the drug analogue, [125I]iodoarylazidoprazosin (IAAP), were abrogated, with little effect on [alpha-32P]-8-azido-ATP labeling and basal ATPase activity. Pairwise alanine substitutuions showed variable effects on function. Substitutions including L975A in combination with any one of the other two replacements had the least effect on Pgp function. The V981A and F983A double mutant showed the most effect on transport of fluorescent substrates. In contrast, alanine substitutions of all four nonconserved residues M986, V988, Q990, and V991 at the putative carboxy-terminal half of TM 12 showed no effect on drug transport except for a partial reduction in bodipy-verapamil extrusion. These results suggest that nonconserved residues in the putative amino-proximal half of TM 12 of Pgp play a more direct role in determining specificity of drug transport function than those in the putative carboxy-terminal half of TM 12.
Human Gene Therapy | 2000
Peter Hafkemeyer; Thomas Licht; Ira Pastan; Michael M. Gottesman
Cancers are frequently chemoresistant because of overexpression of P-glycoprotein. Two different approaches to improve cancer treatment are currently being investigated in clinical trials: inhibition of P-glycoprotein function by reversing agents, and alleviation of leukocytopenia by MDR1 gene transfer to normal bone marrow of patients. We report here that retroviral vectors encoding a mutant P-glycoprotein (MDR1-F983A) protect hematopoietic cells from anticancer drugs even in the presence of trans-(E)-flupentixol, an inhibitor of P-glycoprotein. Transfer of either mutant or wild-type MDR1 to K562 erythroleukemia cells or primary murine bone marrow resulted in reduced accumulation of daunomycin and vinblastine because of increased drug efflux.trans-(E)-Flupentixol at concentrations up to 10 microM failed to reverse drug efflux mediated by the product of the mutant MDR1 while wild-type P-glycoprotein was inhibited. In the presence of 2 microM trans-(E)-flupentixol chemoresistance to daunomycin was circumvented only in K562 cells transduced with wild-type, but not with mutant, MDR1. Moreover, drug resistance of KB-8-5 epidermoid cancer cells, which express the wild-type MDR1 gene at levels comparable to clinical specimens from multidrug-resistant cancers, was fully overcome in the presence of trans-(E)-flupentixol. Vectors expressing mutant P-glycoprotein may help improve chemotherapy by allowing safe dose intensification under conditions in which multidrug-resistant cancers are rendered drug sensitive by reversing agents.
Human Gene Therapy | 1999
Peter Hafkemeyer; Ulrich Brinkmann; Michael M. Gottesman; Ira Pastan
The rapid progress in gene therapy has expanded our ability to alter genetic structure, necessitating the development of methods for detecting the activity of new vectors. The central concept of a reporter gene is simple: it is a defined nucleotide sequence, which when introduced into a biological system, yields a readily measurable phenotype on expression. This provides a convenient parameter that is correlated to the molecular events associated with genetic expression. In this study we demonstrate that Pseudomonas exotoxin A (PE) can serve as a sensitive reporter gene to detect gene expression in single cells of mouse lung on cationic liposome delivery of PE-encoding DNA in vivo. Furthermore, we show that PE expression can be detected as early as 2 hr after systemic gene delivery in lungs of recipient mice. We compared PE with the widely used beta-galactosidase gene for this purpose. PE induces apoptosis that can be detected by TdT end labeling of DNA fragments (TUNEL assay) Since few expressed PE molecules are necessary to trigger the apoptosis cascade, the minimal amount of PE-encoding plasmid DNA needed for detection of apoptotic cells after systemic delivery was 0.1 microg per animal compared with at least 1 microg for the beta-galactosidase-encoding plasmid DNA. The maximum number of apoptotic cells detected in lungs was about 15-20 times higher than the maximum number of beta-galactosidase-positive cells. Specificity of apoptosis due to PE expression on delivery of the PE-encoding plasmid was shown by prevention of the apoptotic cascade by the caspase inhibitor Z-VAD-fmk.
Expert Opinion on Biological Therapy | 2001
Ulrich Brinkmann; Andrea Keppler-Hafkemeyer; Peter Hafkemeyer
Recombinant immunotoxins consist of Fv regions of tumour-selective antibodies fused to toxins found in bacteria, plants or fungi. These toxins must be modified to remove normal-tissue binding sites but to retain all other functions of cytotoxicity. The recombinant antibody fragments target the modified toxin to cancer cells which are killed, either by direct inhibition of protein synthesis, or by concomitant induction of apoptosis. Cells that are not recognised by the antibody fragment because they do not carry the tumour antigen, are spared. Many factors influence the in vivo antitumour activity of recombinant immunotoxins. Among them are considerations of which types of cancer may be the best targets for immunotoxin therapy as well as tumour specificity of the antigen that is targeted by the recombinant antibody. Other relevant issues are the affinity of immunotoxins and their ability to enter and penetrate into tissues and tumours, which in turn is dependent on the size of the protein. A great deal of protein-engineering is required to stabilise the recombinant antibody moiety of immunotoxins, since stability of the molecules is crucial for good clinical efficacy. Excellent activity and specificity can be observed for many recombinant immunotoxins in in vitro assays using cultured cancer cells as well as in animal tumour models. Ongoing clinical trials provide examples where the promising preclinical data correlate with successful results in experimental cancer therapy.
Biochemistry | 1999
Saibal Dey; Peter Hafkemeyer; Ira Pastan; Michael M. Gottesman
Archive | 2003
Preventing Substrate Translocation; Nazli Maki; Peter Hafkemeyer; Saibal Dey
Archive | 2008
Jean-Pierre Gillet; Chava Kimchi-Sarfaty; Shiri Shinar; Thomas Licht; Caroline G. Lee; Peter Hafkemeyer; Christine A. Hrycyna; Ira Pastan; Michael M. Gottesman
Deutsche Medizinische Wochenschrift | 2018
Hans-Peter Allgaier; Christian N. Arnold; Thomas Baumert; Gerhild Becker; Michael Geißler; Peter Hafkemeyer; Jan Harder; Markus H. Heim; Roman Huber; Winfried V. Kern; Leonhard Mohr; Darius Moradpour; Silke Offensperger; Wolf-Bernhard Offensperger; Hans Christian Spangenberg; Robert Thimme; Eike Walter; Fritz von Weizsäcker
Archive | 2003
Ira Pastan; Thomas Licht; Christine A. Hrycyna; Tzipora Shoshani; Michael M. Gottesman; Caroline G.L. Lee; Chava Kimchi-Sarfaty; Peter Hafkemeyer; Yi Zhou