Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Hänggi is active.

Publication


Featured researches published by Peter Hänggi.


Physics Reports | 1998

DRIVEN QUANTUM TUNNELING

Milena Grifoni; Peter Hänggi

Abstract A contemporary review on the behavior of driven tunneling in quantum systems is presented. Diverse phenomena, such as control of tunneling, higher harmonic generation, manipulation of the population dynamics and the interplay between the driven tunneling dynamics and dissipative effects are discussed. In the presence of strong driving fields or ultrafast processes, well-established approximations such as perturbation theory or the rotating wave approximation have to be abandoned. A variety of tools suitable for tackling the quantum dynamics of explicitly time-dependent Schrodinger equations are introduced. On the other hand, a real-time path integral approach to the dynamics of a tunneling particle embedded in a thermal environment turns out to be a powerful method to treat in a rigorous and systematic way the combined effects of dissipation and driving. A selection of applications taken from the fields of chemistry and physics are discussed, that relate to the control of chemical dynamics and quantum transport processes, and which all involve driven tunneling events.


Reviews of Modern Physics | 2012

Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond

Nianbei Li; Jie Ren; Lei Wang; Gang Zhang; Peter Hänggi; Baowen Li

The form of energy termed heat that typically derives from lattice vibrations, i.e., phonons, is usually considered as waste energy and, moreover, deleterious to information processing. However, in this Colloquium, an attempt is made to rebut this common view: By use of tailored models it is demonstrated that phonons can be manipulated similarly to electrons and photons, thus enabling controlled heat transport. Moreover, it is explained that phonons can be put to beneficial use to carry and process information. In the first part ways are presented to control heat transport and to process information for physical systems which are driven by a temperature bias. In particular, a toolkit of familiar electronic analogs for use of phononics is put forward, i.e., phononic devices are described which act as thermal diodes, thermal transistors, thermal logic gates, and thermal memories. These concepts are then put to work to transport, control, and rectify heat in physically realistic nanosystems by devising practical designs of hybrid nanostructures that permit the operation of functional phononic devices; the first experimental realizations are also reported. Next, richer possibilities to manipulate heat flow by use of time-varying thermal bath temperatures or various other external fields are discussed. These give rise to many intriguing phononic nonequilibrium phenomena such as, for example, the directed shuttling of heat, geometrical phase-induced heat pumping, or the phonon Hall effect, which may all find their way into operation with electronic analogs.


ChemPhysChem | 2002

Stochastic Resonance in Biology How Noise Can Enhance Detection of Weak Signals and Help Improve Biological Information Processing

Peter Hänggi

Noise is usually thought of as the enemy of order rather than as a constructive influence. In nonlinear systems that possess some sort of threshold, random noise plays a beneficial role in enhancing the detection of weak information-carrying signals. This phenomenon, termed stochastic resonance, does find useful applications in physical, biological, and biomedical contexts. Certain biological systems may even use this effect for optimizing function and behavior.


Physics Reports | 2005

Driven quantum transport on the nanoscale

Sigmund Kohler; Jörg Lehmann; Peter Hänggi

We explore the prospects to control by use of time-dependent fields quantum transport phenomena in nanoscale systems. In particular, we study for driven conductors the electron current and its noise properties. We review recent corresponding theoretical descriptions which are based on Floquet theory. Alternative approaches, as well as various limiting approximation schemes are investigated and compared. The general theory is subsequently applied to different representative nanoscale devices, like non-adiabatic pumps, gates, quantum ratchets, and transistors. Potential applications range from molecular wires under the influence of strong laser fields to microwave-irradiated quantum dots.


Reviews of Modern Physics | 2011

Colloquium: Quantum Fluctuation Relations: Foundations and Applications

Michele Campisi; Peter Hänggi; Peter Talkner

Two fundamental ingredients play a decisive role in the foundation of fluctuation relations: the principle of microreversibility and the fact that thermal equilibrium is described by the Gibbs canonical ensemble. Building on these two pillars the reader is guided through a self-contained exposition of the theory and applications of quantum fluctuation relations. These are exact results that constitute the fulcrum of the recent development of nonequilibrium thermodynamics beyond the linear response regime. The material is organized in a way that emphasizes the historical connection between quantum fluctuation relations and (non)linear response theory. A number of fundamental issues are clarified which were not completely settled in the prior literature. The main focus is on (i) work fluctuation relations for transiently driven closed or open quantum systems, and (ii) on fluctuation relations for heat and matter exchange in quantum transport settings. Recently performed and proposed experimental applications are presented and discussed.


Journal of Chemical Physics | 1989

Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem

Eli Pollak; Hermann Grabert; Peter Hänggi

An analytical theory is formulated for the thermal (classical mechanical) rate of escape from a metastable state coupled to a dissipative thermal environment. The working expressions are given solely in terms of the quantities entering the generalized Langevin equation for the particle dynamics. The theory covers the whole range of damping strength and is applicable to an arbitrary memory friction. This solves what is commonly known as the Kramers turnover problem. The basic idea underlying the approach is the observation that the escape dynamics is governed by the unstable normal mode coordinate—and not the particle system coordinate. An application to the case of a particle moving in a piecewise harmonic potential with an exponentially decaying memory‐friction is presented. The comparison with the numerical simulation data of Straub, Borkovec, and Berne [J. Chem. Phys. 84, 1788 (1986)] exhibits good agreement between theory and simulation.


EPL | 2001

Stochastic resonance as a collective property of ion channel assemblies

Gerhard Schmid; Igor Goychuk; Peter Hänggi

By use of a stochastic generalization of the Hodgkin-Huxley model we investigate both the phenomena of stochastic resonance (SR) and coherence resonance (CR) in variable size patches of an excitable cell membrane. Our focus is on the challenge: how internal noise stemming from individual ion channels does affect collective properties of the whole ensemble. We investigate both an unperturbed situation with no applied stimuli and one in which the membrane is stimulated externally by a periodic signal and additional external noise. For the nondriven case, we demonstrate the existence of an optimal size of the membrane patch for which the internal noise causes a most regular spike activity. This phenomenon shall be termed intrinsic CR. In the presence of an applied periodic stimulus, we demonstrate that the signal-to-noise ratio (SNR) exhibits SR vs. decreasing patch size, or vs. increasing internal noise strength, respectively. Moreover, we demonstrate that conventional SR vs. the external noise intensity occurs only for sufficiently large membrane patches, when the intensity of internal noise is below its optimal level. Thus, biological SR is seemingly rooted in the collective properties of large ion channel ensembles rather than in the individual stochastic dynamics of single ion channels.


Journal of Chemical Physics | 2003

Thermal conductance through molecular wires

Dvira Segal; Abraham Nitzan; Peter Hänggi

We consider phononic heat transport through molecular chains connecting two thermal reservoirs. For relatively short molecules at normal temperatures we find, using classical stochastic simulations, that heat conduction is dominated by the harmonic part of the molecular force-field. We develop a general theory for the heat conduction through harmonic chains in three-dimensions. Our approach uses the standard formalism that leads to the generalized ~quantum! Langevin equation for a system coupled to a harmonic heat bath, however the driving and relaxation terms are considered separately in a way that leads directly to the steady-state response and the heat current under nonequilibrium driving. A Landauer-type expression for the heat conduction is obtained, in agreement with other recent studies. We used this general formalism to study the heat conduction properties of alkane. We find that for relatively short ~1‐30 carbon molecules! the length and temperature dependence of the molecular heat conduction results from the balance of three factors: ~i! The molecular frequency spectrum in relation to the frequency cutoff of the thermal reservoirs, ~ii! the degree of localization of the molecular normal modes and ~iii! the molecule‐heat reservoirs coupling. The fact that molecular modes at different frequency regimes have different localization properties gives rise to intricate dependence of the heat conduction on molecular length at different temperature. For example, the heat conduction increases with molecular length for short molecular chains at low temperatures. Isotopically substituted disordered chains are also studied and their behavior can be traced to the above factors together with the increased mode localization in disordered chain and the increase in the density of low frequency modes associated with heavier mass substitution. Finally, we compare the heat conduction obtained from this microscopic calculation to that estimated by considering the molecule as a cylinder characterized by a macroscopic heat conduction typical to organic solids. We find that this classical model overestimates the heat conduction of single alkane molecules by about an order of magnitude at room temperature. Implications of the present study to the problem of heating in electrically conducting molecular junctions are pointed out.


EPL | 1994

Periodically Rocked Thermal Ratchets

Roland Bartussek; Peter Hänggi; J. G. Kissner

We consider overdamped Brownian particles in anisotropic, periodic structures (ratchets) that are rocked periodically. Together with the periodic forcing, white thermal noise can generate a non-zero, macroscopic velocity. By tuning the parameters, the direction of the current can be reversed. Additionally, the current as a function of the driving amplitude exhibits several local maxima at finite driving frequencies. For zero thermal noise, the deterministic current assumes an intriguing structure, reflecting the complex dynamics of particle excursions along the ratchet.


ChemPhysChem | 2009

Diffusion in Confined Geometries

P. Sekhar Burada; Peter Hänggi; F. Marchesoni; Gerhard Schmid; Peter Talkner

Diffusive transport of particles or, more generally, small objects, is a ubiquitous feature of physical and chemical reaction systems. In configurations containing confining walls or constrictions, transport is controlled both by the fluctuation statistics of the jittering objects and the phase space available to their dynamics. Consequently, the study of transport at the macro- and nanoscales must address both Brownian motion and entropic effects. Herein we report on recent advances in the theoretical and numerical investigation of stochastic transport occurring either in microsized geometries of varying cross sections or in narrow channels wherein the diffusing particles are hindered from passing each other (single-file diffusion). For particles undergoing biased diffusion in static suspension media enclosed by confining geometries, transport exhibits intriguing features such as 1) a decrease in nonlinear mobility with increasing temperature or also 2) a broad excess peak of the effective diffusion above the free diffusion limit. These paradoxical aspects can be understood in terms of entropic contributions resulting from the restricted dynamics in phase space. If, in addition, the suspension medium is subjected to external, time-dependent forcing, rectification or segregation of the diffusing Brownian particles becomes possible. Likewise, the diffusion in very narrow, spatially modulated channels is modified via contact particle-particle interactions, which induce anomalous sub-diffusion. The effective sub-diffusion constant for a driven single file also develops a resonance-like structure as a function of the confining coupling constant.

Collaboration


Dive into the Peter Hänggi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sigmund Kohler

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Jung

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerzy Łuczka

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge