Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Hinterdorfer is active.

Publication


Featured researches published by Peter Hinterdorfer.


Nature Methods | 2006

Detection and localization of single molecular recognition events using atomic force microscopy

Peter Hinterdorfer; Yves F. Dufrêne

Because of its piconewton force sensitivity and nanometer positional accuracy, the atomic force microscope (AFM) has emerged as a powerful tool for exploring the forces and the dynamics of the interaction between individual ligands and receptors, either on isolated molecules or on cellular surfaces. These studies require attaching specific biomolecules or cells on AFM tips and on solid supports and measuring the unbinding forces between the modified surfaces using AFM force spectroscopy. In this review, we describe the current methodology for molecular recognition studies using the AFM, with an emphasis on strategies available for preparing AFM tips and samples, and on procedures for detecting and localizing single molecular recognition events.


Biomaterials | 2008

Proliferation of aligned mammalian cells on laser-nanostructured polystyrene.

Esther Rebollar; Irene Frischauf; Michael Olbrich; Thomas Peterbauer; Steffen Hering; Johannes Preiner; Peter Hinterdorfer; Christoph Romanin; J. Heitz

Biomaterial surface chemistry and nanoscale topography are important for many potential applications in medicine and biotechnology as they strongly influence cell function, adhesion and proliferation. In this work, we present periodic surface structures generated by linearly polarized KrF laser light (248 nm) on polystyrene (PS) foils. These structures have a periodicity of 200-430 nm and a depth of 30-100 nm, depending on the angle of incidence of the laser beam. The changes in surface topography and chemistry were analysed by atomic force microscopy (AFM), advancing water contact-angle measurements, Fourier-transform infrared spectroscopy using an attenuated total reflection device (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). We show that the surface laser modification results in a significantly enhanced adhesion and proliferation of human embryonic kidney cells (HEK-293) compared to the unmodified polymer foil. Furthermore, we report on the alignment of HEK-293 cells, Chinese hamster ovary (CHO-K1) cells and skeletal myoblasts along the direction of the structures. The results indicate that the presence of nanostructures on the substrates can guide cell alignment along definite directions, and more importantly, in our opinion, that this alignment is only observed when the periodicity is above a critical periodicity value that is cell-type specific.


Nature Biotechnology | 1999

Antibody recognition imaging by force microscopy

Anneliese Raab; Wenhai Han; Dirk Badt; Sandra J. Smith-Gill; Stuart Lindsay; Hansgeorg Schindler; Peter Hinterdorfer

We have developed a method that combines dynamic force microscopy with the simultaneous molecular recognition of an antigen by an antibody, during imaging. A magnetically oscillated atomic force microscopy tip carrying a tethered antibody was scanned over a surface to which lysozyme was bound. By oscillating the probe at an amplitude of only a few nanometers, the antibody was kept in close proximity to the surface, allowing fast and efficient antigen recognition and gentle interaction between tip and sample. Antigenic sites were evident from reduction of the oscillation amplitude, as a result of antibody–antigen recognition during the lateral scan. Lysozyme molecules bound to the surface were recognized by the antibody on the scanning tip with a few nanometers lateral resolution. In principle, any ligand can be tethered to the tip; thus, this technique could potentially be used for nanometer-scale epitope mapping of biomolecules and localizing receptor sites during biological processes.


Biophysical Journal | 1998

SIMULTANEOUS HEIGHT AND ADHESION IMAGING OF ANTIBODY-ANTIGEN INTERACTIONS BY ATOMIC FORCE MICROSCOPY

Oscar H. Willemsen; M.M.E. Snel; Kees van der Werf; Bart G. de Grooth; Jan Greve; Peter Hinterdorfer; Hermann J. Gruber; Hansgeorg Schindler; Yvette van Kooyk; Carl G. Figdor

Specific molecular recognition events, detected by atomic force microscopy (AFM), so far lack the detailed topographical information that is usually observed in AFM. We have modified our AFM such that, in combination with a recently developed method to measure antibody-antigen recognition on the single molecular level (Hinterdorfer, P., W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Proc. Natl. Acad. Sci. USA 93:3477-3481 (1996)), it allows imaging of a submonolayer of intercellular adhesion molecule-1 (ICAM-1) in adhesion mode. We demonstrate that for the first time the resolution of the topographical image in adhesion mode is only limited by tip convolution and thus comparable to tapping mode images. This is demonstrated by imaging of individual ICAM-1 antigens in both the tapping mode and the adhesion mode. The contrast in the adhesion image that was measured simultaneously with the topography is caused by recognition between individual antibody-antigen pairs. By comparing the high-resolution height image with the adhesion image, it is possible to show that specific molecular recognition is highly correlated with topography. The stability of the improved microscope enabled imaging with forces as low as 100 pN and ultrafast scan speed of 22 force curves per second. The analysis of force curves showed that reproducible unbinding events on subsequent scan lines could be measured.


Single Molecules | 2000

Static and Dynamical Properties of Single Poly(Ethylene Glycol) Molecules Investigated by Force Spectroscopy

Ferry Kienberger; Vassili Pastushenko; Gerald Kada; Hermann J. Gruber; Christian K. Riener; Hansgeorg Schindler; Peter Hinterdorfer

Molecular recognition force spectroscopy was employed to probe the mechanical and dynamical features poly(ethylene glycol) (PEG). His6 was covalently coupled to AFM tips via PEG for the specific recognition of NTA on the surface. Force-extension profiles of single molecules obtained in force-distance cycles were fitted with an extended Worm Like Chain (WLC) model with a quality of the fit σdata-fit/σdata of 1.3. The fit revealed a persistence length LP of 3.8 ± 0.02 A and an enthalpic correction term K0 of 1561 ± 33 pN. Amplitude-distance cycles were recorded with dynamical force microscopy. Fitting with the damped linear oscillator model, using values for the persistence length and the nonlinear spring constant from force-distance cycles, yielded a fit quality σdata-fit/σdata of 1.5. Force-distance cycles calculated from amplitude-distance cycles by integration nicely agreed with simultaneously measured force-distance cycles, and even yielded an improved signal to noise ratio. This shows that no dissipative and irreversible processes occur and that the force extension profile of PEG is determined by purely elastic behavior.


Analytica Chimica Acta | 2003

Simple test system for single molecule recognition force microscopy

Christian K. Riener; Cordula M. Stroh; Andreas Ebner; Christian W. Klampfl; Alex A. Gall; Christoph Romanin; Yuri L. Lyubchenko; Peter Hinterdorfer; Hermann J. Gruber

We have established an easy-to-use test system for detecting receptor–ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin–biotin, probably the best characterized receptor–ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG800 diamine was glutarylated, the mono-adduct NH2–PEG–COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin–PEG–COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin–PEG–NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin–biotin recognition events were discriminated from nonspecific tip–mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force–distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy.


Journal of Cell Science | 2005

Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy

Gerald Pfister; Cordula M. Stroh; Hannes Perschinka; Michaela Kind; Michael Knoflach; Peter Hinterdorfer; Georg Wick

The highly conserved and ubiquitous heat shock proteins (HSP) are essential for the cellular homeostasis and efficiently trigger cellular responses to stress conditions. Both microbial and human HSP act as dominant antigens in numerous infectious and autoimmune diseases such as atherosclerosis, inducing a strong immune-inflammatory response. In the present study, the surface localization of HSP60 on stressed and unstressed human umbilical venous endothelial cells (HUVECs) was investigated using sensitive high resolution microscopy methods and flow cytometry. Confocal laser scanning microscopy (CLSM) revealed an increase of HSP60 in the mitochondria and on the surface of heat-stressed living and fixed HUVECs compared to unstressed cells. Atomic force microscopy (AFM), which has developed as sensitive surface-probe technique in biology, confirmed the presence of HSP60 on the membrane of stressed cells at an even higher lateral resolution by detecting specific single molecule binding events between the monoclonal antibody AbII-13 tethered to AFM tips and HSP60 molecules on cells. The interaction force (force required to break a single AbII-13/HSP60 bond) was 59±2 pN, which correlated nicely to the 51±1 pN measured with isolated HSP60 attached to mica surfaces. Overall, we found clear evidence for the occurrence of HSP60 on the surface of stressed HUVECs in a very similar patchy distribution pattern in living and fixed cells. The relevance of our findings with respect to the role of HSP60 in atherogenesis is discussed.


ACS Nano | 2010

Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments

Elena Heister; Constanze Lamprecht; Vera Neves; Carmen Tîlmaciu; Lucien Datas; Emmanuel Flahaut; Brigitte Soula; Peter Hinterdorfer; Helen M. Coley; S. Ravi P. Silva; Johnjoe McFadden

Aqueous dispersions of functionalized carbon nanotubes (CNTs) are now widely used for biomedical applications. Their stability in different in vitro or in vivo environments, however, depends on a wide range of parameters, such as pH and salt concentrations of the surrounding medium, and length, aspect ratio, surface charge, and functionalization of the applied CNTs. Although many of these aspects have been investigated separately, no study is available in the literature to date, which examines these parameters simultaneously. Therefore, we have chosen five types of carbon nanotubes, varying in their dimensions and surface properties, for a multidimensional analysis of dispersion stability in salt solutions of differing pH and concentrations. Furthermore, we examine the dispersion stability of oxidized CNTs in biological fluids, such as cellular growth media and human plasma, and their toxicity toward cancer cells. To enhance dispersibility and biocompatibility, the influence of different functionalization schemes is studied. The results of our investigations indicate that both CNT dimensions and surface functionalization have a significant influence on their dispersion and in vitro behavior. In particular, factors such as a short aspect ratio, presence of oxidation debris and serum proteins, low salt concentration, and an appropriate pH are shown to improve the dispersion stability. Furthermore, covalent surface functionalization with amine-terminated polyethylene glycol (PEG) is demonstrated to stabilize CNT dispersions in various media and to reduce deleterious effects on cultured cells. These findings provide crucial data for the development of biofunctionalization protocols, for example, for future cancer theranostics, and optimizing the stability of functionalized CNTs in varied biological environments.


Ultramicroscopy | 2000

Data analysis of interaction forces measured with the atomic force microscope

Werner Baumgartner; Peter Hinterdorfer; Hansgeorg Schindler

The force-distance cycle mode of the atomic force microscope (AFM) allows for detection of interaction forces between the AFM-tip and a substrate (probe). This can either be a direct tip-sample interaction or an interaction between molecules coupled to the tip and probe, respectively. The interaction forces are typically in the range of a few pN to some hundred pN. In this article we describe algorithms for the analysis of force-distance cycles, to quantify interaction forces between tip and probe. Both, the direct tip-probe interaction as well as the interaction between specifically bound molecules are analyzed. The molecules bound to tip and probe have to be either long and flexible or have to be bound via a flexible cross linker. The algorithms are exemplified on direct tip-probe interactions and on unbinding events of cadherins which are bound via PEG-spacers to the AFM-tip and to the probe.


Transfusion | 2008

Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin.

Ulrich Salzer; Rong Zhu; Marleen Luten; Hirotaka Isobe; Vassili Pastushenko; Thomas Perkmann; Peter Hinterdorfer; G.J.C.G.M. Bosman

BACKGROUND: The release of vesicles by red blood cells (RBCs) occurs in vivo and in vitro under various conditions. Vesiculation also takes place during RBC storage and results in the accumulation of vesicles in RBC units. The membrane protein composition of the storage‐associated vesicles has not been studied in detail. The characterization of the vesicular membrane might hint at the underlying mechanism of the storage‐associated changes in general and the vesiculation process in particular.

Collaboration


Dive into the Peter Hinterdorfer's collaboration.

Top Co-Authors

Avatar

Hermann J. Gruber

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Andreas Ebner

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Zhu

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lilia A. Chtcheglova

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Hansgeorg Schindler

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Johannes Preiner

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Dieter Blaas

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge