Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Hodder is active.

Publication


Featured researches published by Peter Hodder.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways

Tsui-Fen Chou; Steve J. Brown; Dmitriy Minond; Brian E. Nordin; Kelin Li; Amanda C. Jones; Peter Chase; Patrick Porubsky; Brian M. Stoltz; Frank J. Schoenen; Matthew P. Patricelli; Peter Hodder; Hugh Rosen; Raymond J. Deshaies

A specific small-molecule inhibitor of p97 would provide an important tool to investigate diverse functions of this essential ATPase associated with diverse cellular activities (AAA) ATPase and to evaluate its potential to be a therapeutic target in human disease. We carried out a high-throughput screen to identify inhibitors of p97 ATPase activity. Dual-reporter cell lines that simultaneously express p97-dependent and p97-independent proteasome substrates were used to stratify inhibitors that emerged from the screen. N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ) was identified as a selective, potent, reversible, and ATP-competitive p97 inhibitor. DBeQ blocks multiple processes that have been shown by RNAi to depend on p97, including degradation of ubiquitin fusion degradation and endoplasmic reticulum-associated degradation pathway reporters, as well as autophagosome maturation. DBeQ also potently inhibits cancer cell growth and is more rapid than a proteasome inhibitor at mobilizing the executioner caspases-3 and -7. Our results provide a rationale for targeting p97 in cancer therapy.


Nature Chemical Biology | 2012

Small Molecule Proteostasis Regulators for Protein Conformational Diseases

Barbara Calamini; Maria Catarina Silva; Franck Madoux; Darren M. Hutt; Shilpi Khanna; Monica A. Chalfant; S Adrian Saldanha; Peter Hodder; Bradley D. Tait; Dan Garza; William E. Balch; Richard I. Morimoto

Protein homeostasis (proteostasis) is essential for cellular and organismal health. Stress, aging, and the chronic expression of misfolded proteins, however, challenge the proteostasis machinery and the vitality of the cell. Enhanced expression of molecular chaperones, regulated by heat shock transcription factor-1 (HSF-1), has been shown to restore proteostasis in a variety of conformational disease models, suggesting a promising therapeutic approach. We describe the results of a ∼900,000 small molecule screen that identified novel classes of small molecule proteostasis regulators (PRs) that induce HSF-1-dependent chaperone expression and restore protein folding in multiple conformational disease models. The beneficial effects to proteome stability are mediated by HSF-1, DAF-16/FOXO, SKN-1/Nrf-2, and the chaperone machinery through mechanisms that are distinct from current known small molecule activators of the HSR. We suggest that modulation of the proteostasis network by PRs represents a promising therapeutic approach for the treatment of a variety of protein conformational diseases.


Analytical Biochemistry | 2003

Development of an intact cell reporter gene β-lactamase assay for G protein-coupled receptors for high-throughput screening

Priya Kunapuli; Richard W. Ransom; Kathy L. Murphy; Doug Pettibone; Julie Kerby; Sarah Grimwood; Paul Zuck; Peter Hodder; Raul Lacson; Ira Hoffman; James Inglese; Berta Strulovici

G protein-coupled receptors (GPCRs) are involved in a large variety of physiological disorders, and are thus important pharmaceutical drug targets. Here, we describe the development and characterization of a beta-lactamase reporter gene assay as a functional readout for the ligand-induced activation of the human bradykinin B1 receptor, expressed recombinantly in CHO cells. The beta-lactamase reporter gene assay provides high sensitivity due to the absence of endogenous beta-lactamase activity in mammalian cells. The cell-permeable fluorogenic substrate allows single-cell cloning of cells expressing functional BK1 receptors. Pharmacological characterization reveals comparable sensitivity and potency of known BK1 receptor agonists and antagonists between the beta-lactamase assay, competition-binding assay, and other direct measurements of second messengers. The beta-lactamase assay has been optimized for cell density, time of agonist stimulation, and DMSO sensitivity. This CHO-hBK1-beta-lactamase assay is well suited to automation and miniaturization required for high-throughput screening.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors

Daniel A. Bachovchin; Justin T. Mohr; Anna E Speers; Chu Wang; Jacob M. Berlin; Timothy P. Spicer; Virneliz Fernandez-Vega; Peter Chase; Peter Hodder; Stephan C. Schürer; Daniel K. Nomura; Hugh Rosen; Gregory C. Fu; Benjamin F. Cravatt

National Institutes of Health (NIH)-sponsored screening centers provide academic researchers with a special opportunity to pursue small-molecule probes for protein targets that are outside the current interest of, or beyond the standard technologies employed by, the pharmaceutical industry. Here, we describe the outcome of an inhibitor screen for one such target, the enzyme protein phosphatase methylesterase-1 (PME-1), which regulates the methylesterification state of protein phosphatase 2A (PP2A) and is implicated in cancer and neurodegeneration. Inhibitors of PME-1 have not yet been described, which we attribute, at least in part, to a dearth of substrate assays compatible with high-throughput screening. We show that PME-1 is assayable by fluorescence polarization-activity-based protein profiling (fluopol-ABPP) and use this platform to screen the 300,000+ member NIH small-molecule library. This screen identified an unusual class of compounds, the aza-β-lactams (ABLs), as potent (IC50 values of approximately 10 nM), covalent PME-1 inhibitors. Interestingly, ABLs did not derive from a commercial vendor but rather an academic contribution to the public library. We show using competitive-ABPP that ABLs are exquisitely selective for PME-1 in living cells and mice, where enzyme inactivation leads to substantial reductions in demethylated PP2A. In summary, we have combined advanced synthetic and chemoproteomic methods to discover a class of ABL inhibitors that can be used to selectively perturb PME-1 activity in diverse biological systems. More generally, these results illustrate how public screening centers can serve as hubs to create spontaneous collaborative opportunities between synthetic chemistry and chemical biology labs interested in creating first-in-class pharmacological probes for challenging protein targets.


Journal of Biological Chemistry | 2013

Development of functionally selective, small molecule agonists at kappa opioid receptors

Lei Zhou; Kimberly M. Lovell; Kevin J. Frankowski; Stephen R. Slauson; Angela M. Phillips; John M. Streicher; Edward L. Stahl; Cullen L. Schmid; Peter Hodder; Franck Madoux; Michael D. Cameron; Thomas E. Prisinzano; Jeffrey Aubé; Laura M. Bohn

Background: Kappa opioid receptor (KOR) signaling may produce antinociception through G protein or dysphoria through βarrestin pathways. Results: Two highly selective, brain penetrant agonist scaffolds bias KOR signaling toward G protein coupling and produce antinociception in mice. Conclusion: Described are first-in-class small molecule agonists that bias KOR signaling through G proteins. Significance: Functionally selective KOR agonists can now be used in vivo. The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and βarrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects of KOR activation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through βarrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from βarrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activate G protein coupling but weakly recruit βarrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo.


Journal of the American Chemical Society | 2012

Confirming Target Engagement for Reversible Inhibitors in Vivo by Kinetically Tuned Activity-Based Probes

Alexander Adibekian; Brent R. Martin; Jae Won Chang; Ku-Lung Hsu; Katsunori Tsuboi; Daniel A. Bachovchin; Anna E Speers; Steven J. Brown; Timothy P. Spicer; Virneliz Fernandez-Vega; Jill Ferguson; Peter Hodder; Hugh Rosen; Benjamin F. Cravatt

The development of small-molecule inhibitors for perturbing enzyme function requires assays to confirm that the inhibitors interact with their enzymatic targets in vivo. Determining target engagement in vivo can be particularly challenging for poorly characterized enzymes that lack known biomarkers (e.g., endogenous substrates and products) to report on their inhibition. Here, we describe a competitive activity-based protein profiling (ABPP) method for measuring the binding of reversible inhibitors to enzymes in animal models. Key to the success of this approach is the use of activity-based probes that show tempered rates of reactivity with enzymes, such that competition for target engagement with reversible inhibitors can be measured in vivo. We apply the competitive ABPP strategy to evaluate a newly described class of piperazine amide reversible inhibitors for the serine hydrolases LYPLA1 and LYPLA2, two enzymes for which selective, in vivo active inhibitors are lacking. Competitive ABPP identified individual piperazine amides that selectively inhibit LYPLA1 or LYPLA2 in mice. In summary, competitive ABPP adapted to operate with moderately reactive probes can assess the target engagement of reversible inhibitors in animal models to facilitate the discovery of small-molecule probes for characterizing enzyme function in vivo.


Cancer Research | 2014

Bufalin Is a Potent Small-Molecule Inhibitor of the Steroid Receptor Coactivators SRC-3 and SRC-1

Ying Wang; David M. Lonard; Yang Yu; Dar-Chone Chow; Timothy Palzkill; Jin Wang; Ruogu Qi; Alexander J. Matzuk; Xianzhou Song; Franck Madoux; Peter Hodder; Peter Chase; Patrick R. Griffin; Suoling Zhou; Lan Liao; Jianming Xu; Bert W. O'Malley

Virtually all transcription factors partner with coactivators that recruit chromatin remodeling factors and interact with the basal transcription machinery. Coactivators have been implicated in cancer cell proliferation, invasion, and metastasis, including the p160 steroid receptor coactivator (SRC) family composed of SRC-1 (NCOA1), SRC-2 (TIF2/GRIP1/NCOA2), and SRC-3 (AIB1/ACTR/NCOA3). Given their broad involvement in many cancers, they represent candidate molecular targets for new chemotherapeutics. Here, we report on the results of a high-throughput screening effort that identified the cardiac glycoside bufalin as a potent small-molecule inhibitor for SRC-3 and SRC-1. Bufalin strongly promoted SRC-3 protein degradation and was able to block cancer cell growth at nanomolar concentrations. When incorporated into a nanoparticle delivery system, bufalin was able to reduce tumor growth in a mouse xenograft model of breast cancer. Our work identifies bufalin as a potentially broad-spectrum small-molecule inhibitor for cancer.


The Journal of Clinical Endocrinology and Metabolism | 2009

Inhibition of adrenocortical carcinoma cell proliferation by steroidogenic factor-1 inverse agonists.

Mabrouka Doghman; Julie Cazareth; Dominique Douguet; Franck Madoux; Peter Hodder; Enzo Lalli

CONTEXT Transcription factor steroidogenic factor-1 (SF-1) plays a pivotal role in the control of adrenocortical cell steroidogenesis and proliferation. SF-1 amplification and overexpression are found in most cases of childhood adrenocortical tumors (ACTs). OBJECTIVE Our objective was to investigate the effect of SF-1 inverse agonists of the alkyloxyphenol and isoquinolinone classes on the proliferation of human adrenocortical cell lines expressing SF-1 (H295R), in conditions of basal and increased SF-1 expression, or negative for SF-1 expression (SW-13). MAIN OUTCOME MEASURES Proliferation assays, immunoblots, flow cytometric analyses, steroid hormone assays, and reverse transcription quantitative PCR were used. RESULTS SF-1 inhibitors of the alkyloxyphenol class displayed a dose-dependent inhibitory effect on both SF-1-positive and -negative ACT cells, whereas SF-1 inverse agonists of the isoquinolinone class selectively inhibited cell proliferation elicited by SF-1 overexpression. These drugs also inhibited stimulated steroid hormone secretion and CYP21 and CYP17 mRNA expression. CONCLUSION SF-1 inhibitors may represent a useful tool in the chemotherapy of ACTs.


Chemistry & Biology | 2010

Small molecule activators of TRPML3

Christian Grimm; Simone Jörs; S Adrian Saldanha; Alexander G. Obukhov; Bifeng Pan; Kazuo Oshima; Math P. Cuajungco; Peter Chase; Peter Hodder; Stefan Heller

We conducted a high-throughput screen for small molecule activators of the TRPML3 ion channel, which, when mutated, causes deafness and pigmentation defects. Cheminformatics analyses of the 53 identified and confirmed compounds revealed nine different chemical scaffolds and 20 singletons. We found that agonists strongly potentiated TRPML3 activation with low extracytosolic [Na(+)]. This synergism revealed the existence of distinct and cooperative activation mechanisms and a wide dynamic range of TRPML3 activity. Testing compounds on TRPML3-expressing sensory hair cells revealed the absence of activator-responsive channels. Epidermal melanocytes showed only weak or no responses to the compounds. These results suggest that TRPML3 in native cells might be absent from the plasma membrane or that the protein is a subunit of heteromeric channels that are nonresponsive to the activators identified in this screen.


Cell | 2015

Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes

Stuart L. Schreiber; Joanne Kotz; Min Li; Jeffrey Aubé; Christopher P. Austin; John C. Reed; Hugh Rosen; E. Lucile White; Larry A. Sklar; Craig W. Lindsley; Benjamin Alexander; Joshua Bittker; Paul A. Clemons; Andrea de Souza; Michael Foley; Michelle Palmer; Alykhan F. Shamji; Mathias J. Wawer; Owen B. McManus; Meng Wu; Beiyan Zou; Haibo Yu; Jennifer E. Golden; Frank J. Schoenen; Anton Simeonov; Ajit Jadhav; Michael R. Jackson; Anthony B. Pinkerton; Thomas Dy Chung; Patrick R. Griffin

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.

Collaboration


Dive into the Peter Hodder's collaboration.

Top Co-Authors

Avatar

Hugh Rosen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jill Ferguson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Chase

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

William R. Roush

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Steven J Brown

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna E Speers

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge