Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Howard is active.

Publication


Featured researches published by Peter Howard.


Lancet Infectious Diseases | 2015

Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study

Kate S. Baker; Timothy J. Dallman; Philip M. Ashton; Martin Day; Gwenda Hughes; Paul Crook; Victoria L Gilbart; Sandra Zittermann; Vanessa Allen; Benjamin P. Howden; Takehiro Tomita; Mary Valcanis; Simon R. Harris; Thomas Richard Connor; Vitali Sintchenko; Peter Howard; Jeremy Brown; Nicola K. Petty; Malika Gouali; Duy Pham Thanh; Karen H. Keddy; Anthony M. Smith; Kaisar A. Talukder; Shah M. Faruque; Julian Parkhill; Stephen Baker; François-Xavier Weill; Claire Jenkins; Nicholas R. Thomson

BACKGROUND Shigellosis is an acute, severe bacterial colitis that, in high-income countries, is typically associated with travel to high-risk regions (Africa, Asia, and Latin America). Since the 1970s, shigellosis has also been reported as a sexually transmitted infection in men who have sex with men (MSM), in whom transmission is an important component of shigellosis epidemiology in high-income nations. We aimed to use sophisticated subtyping and international sampling to determine factors driving shigellosis emergence in MSM linked to an outbreak in the UK. METHODS We did a large-scale, cross-sectional genomic epidemiological study of shigellosis cases collected from 29 countries between December, 1995, and June 8, 2014. Focusing on an ongoing epidemic in the UK, we collected and whole-genome sequenced clinical isolates of Shigella flexneri serotype 3a from high-risk and low-risk regions, including cases associated with travel and sex between men. We examined relationships between geographical, demographic, and clinical patient data with the isolate antimicrobial susceptibility, genetic data, and inferred evolutionary relationships. FINDINGS We obtained 331 clinical isolates of S flexneri serotype 3a, including 275 from low-risk regions (44 from individuals who travelled to high-risk regions), 52 from high-risk regions, and four outgroup samples (ie, closely related, but genetically distinct isolates used to determine the root of the phylogenetic tree). We identified a recently emerged lineage of S flexneri 3a that has spread intercontinentally in less than 20 years throughout regions traditionally at low risk for shigellosis via sexual transmission in MSM. The lineage had acquired multiple antimicrobial resistance determinants, and prevailing sublineages were strongly associated with resistance to the macrolide azithromycin. Eight (4%) of 206 isolates from the MSM-associated lineage were obtained from patients who had previously provided an isolate; these serial isolations indicated atypical infection patterns (eg, reinfection). INTERPRETATION We identified transmission-facilitating behaviours and atypical course(s) of infection as precipitating factors in shigellosis-affected MSM. The intercontinental spread of antimicrobial-resistant shigella through established transmission routes emphasises the need for new approaches to tackle the public health challenge of sexually transmitted infections in MSM. FUNDING Wellcome Trust (grant number 098051).


Frontiers in Microbiology | 2013

The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain

Simon Le Hello; Amany Abdelrehim Bekhit; Sophie A. Granier; H. Barua; Janine Beutlich; Magdalena Zając; Sebastian Münch; Vitali Sintchenko; Brahim Bouchrif; Kayode Fashae; Jean-Louis Pinsard; Lucile Sontag; Laëtitia Fabre; Martine Garnier; Véronique Guibert; Peter Howard; Rene S. Hendriksen; Jens Peter Christensen; Paritosh Kumar Biswas; Axel Cloeckaert; Wolfgang Rabsch; Dariusz Wasyl; Benoît Doublet; François-Xavier Weill

While the spread of Salmonella enterica serotype Kentucky resistant to ciprofloxacin across Africa and the Middle-East has been described recently, the presence of this strain in humans, food, various animal species (livestock, pets, and wildlife) and in environment is suspected in other countries of different continents. Here, we report results of an in-depth molecular epidemiological study on a global human and non-human collection of S. Kentucky (n = 70). We performed XbaI-pulsed field gel electrophoresis and multilocus sequence typing, assessed mutations in the quinolone resistance-determining regions, detected β-lactam resistance mechanisms, and screened the presence of the Salmonella genomic island 1 (SGI1). In this study, we highlight the rapid and extensive worldwide dissemination of the ciprofloxacin-resistant S. Kentucky ST198-X1-SGI1 strain since the mid-2000s in an increasingly large number of contaminated sources, including the environment. This strain has accumulated an increasing number of chromosomal and plasmid resistance determinants and has been identified in the Indian subcontinent, Southeast Asia and Europe since 2010. The second substitution at position 87 in GyrA (replacing the amino acid Asp) appeared helpful for epidemiological studies to track the origin of contamination. This global study provides evidence leading to the conclusion that high-level resistance to ciprofloxacin in S. Kentucky is a simple microbiological trait that facilitates the identification of the epidemic clone of interest, ST198-X1-SGI1. Taking this into account is essential in order to detect and monitor it easily and to take rapid measures in livestock to ensure control of this infection.


BMC Infectious Diseases | 2012

Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA)

Vitali Sintchenko; Qinning Wang; Peter Howard; Connie Wy Ha; Katina Kardamanidis; Jennie Musto; Gwendolyn L. Gilbert

BackgroundProspective typing of Salmonella enterica serovar Typhimurium (STM) by multiple-locus variable-number tandem-repeat analysis (MLVA) can assist in identifying clusters of STM cases that might otherwise have gone unrecognised, as well as sources of sporadic and outbreak cases. This paper describes the dynamics of human STM infection in a prospective study of STM MLVA typing for public health surveillance.MethodsDuring a three-year period between August 2007 and September 2010 all confirmed STM isolates were fingerprinted using MLVA as part of the New South Wales (NSW) state public health surveillance program.ResultsA total of 4,920 STM isolates were typed and a subset of 4,377 human isolates was included in the analysis. The STM spectrum was dominated by a small number of phage types, including DT170 (44.6% of all isolates), DT135 (13.9%), DT9 (10.8%), DT44 (4.5%) and DT126 (4.5%). There was a difference in the discriminatory power of MLVA types within endemic phage types: Simpsons index of diversity ranged from 0.109 and 0.113 for DTs 9 and 135 to 0.172 and 0.269 for DTs 170 and 44, respectively. 66 distinct STM clusters were observed ranging in size from 5 to 180 cases and in duration from 4 weeks to 25 weeks. 43 clusters had novel MLVA types and 23 represented recurrences of previously recorded MLVA types. The diversity of the STM population remained relatively constant over time. The gradual increase in the number of STM cases during the study was not related to significant changes in the number of clusters or their size. 667 different MLVA types or patterns were observed.ConclusionsProspective MLVA typing of STM allows the detection of community outbreaks and demonstrates the sustained level of STM diversity that accompanies the increasing incidence of human STM infections. The monitoring of novel and persistent MLVA types offers a new benchmark for STM surveillance.A part of this study was presented at the MEEGID × (Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) Conference, 3-5 November 2010, Amsterdam, The Netherlands


Journal of Clinical Microbiology | 2015

It Is Not All about Single Nucleotide Polymorphisms: Comparison of Mobile Genetic Elements and Deletions in Listeria monocytogenes Genomes Links Cases of Hospital-Acquired Listeriosis to the Environmental Source

Qinning Wang; Nadine Holmes; Elena Martinez; Peter Howard; Grant A. Hill-Cawthorne; Vitali Sintchenko

ABSTRACT The control of food-borne outbreaks caused by Listeria monocytogenes in humans relies on the timely identification of food or environmental sources and the differentiation of outbreak-related isolates from unrelated ones. This study illustrates the utility of whole-genome sequencing for examining the link between clinical and environmental isolates of L. monocytogenes associated with an outbreak of hospital-acquired listeriosis in Sydney, Australia. Comparative genomic analysis confirmed an epidemiological link between the three clinical and two environmental isolates. Single nucleotide polymorphism (SNP) analysis showed that only two SNPs separated the three human outbreak isolates, which differed by 19 to 20 SNPs from the environmental isolates and 71 to >10,000 SNPs from sporadic L. monocytogenes isolates. The chromosomes of all human outbreak isolates and the two suspected environmental isolates were syntenic. In contrast to the genomes of background sporadic isolates, all epidemiologically linked isolates contained two novel prophages and a previously unreported clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) locus subtype sequence. The mobile genetic element (MGE) profile of these isolates was distinct from that of the other serotype 1/2b reference strains and sporadic isolates. The identification of SNPs and clonally distinctive MGEs strengthened evidence to distinguish outbreak-related isolates of L. monocytogenes from cocirculating endemic strains.


BMC Microbiology | 2016

Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014

Anastasia Phillips; Cristina Sotomayor; Qinning Wang; Nadine Holmes; Catriona Furlong; Kate A. Ward; Peter Howard; Sophie Octavia; Ruiting Lan; Vitali Sintchenko

BackgroundSalmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance.MethodsWe performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context.ResultsThe WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected.ConclusionsWGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis.


New South Wales Public Health Bulletin | 2008

Salmonella typing in New South Wales: current methods and application of improved epidemiological tools

Qinning Wang; Robert Chiew; Peter Howard; Gwendolyn L. Gilbert

Salmonellosis caused by enteropathogens of the genus Salmonella is a major public health concern in Australia. Serotyping is usually performed in enteric reference laboratories for the initial characterisation and differentiation of Salmonella species. Further strain identification within serovars may be achieved by phage typing and this is used as an epidemiological tool for outbreak investigations. Phage typing has limited discriminatory ability and the necessity of sending specimens interstate from NSW for this test causes delays in recognising outbreaks and reduces the likelihood of identifying the source. Multilocus variable-number tandem-repeat analysis has a high discriminatory power and faster turnaround time, and is the method of choice for outbreak investigation. Additionally, a newly developed multiplex PCR-based reverse line blot hybridisation system is able to identify most of the phage types prevalent in NSW. Combining these last two molecular methods will significantly enhance outbreak investigations and surveillance of Salmonella infections in NSW.


Emerging Infectious Diseases | 2018

Multidrug-Resistant Salmonellaenterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016–2017

Alicia Arnott; Qinning Wang; Nathan L. Bachmann; Rosemarie Sadsad; Chayanika Biswas; Cristina Sotomayor; Peter Howard; Rebecca Rockett; Agnieszka Wiklendt; Jon Iredell; Vitali Sintchenko

Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing–guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates.


Journal of Antimicrobial Chemotherapy | 2017

Shigella species epidemiology and antimicrobial susceptibility: the implications of emerging azithromycin resistance for guiding treatment, guidelines and breakpoints

Jeremy Brown; Simon J Willcox; Neil Franklin; Briony Hazelton; Peter Howard; Tracie Reinten; Vicky Sheppeard; Matthew Vn O’Sullivan

Objectives To examine antimicrobial susceptibility patterns and predictors of resistance among Shigella isolates in New South Wales (NSW), Australia during 2013-14 with emphasis on azithromycin. Methods Cross-sectional analysis of all shigellosis cases (160) notified to public health authorities in NSW, Australia was performed. Results Among 160 Shigella isolates tested, 139 (86.9%) were susceptible to azithromycin, 104 (65.0%) to ciprofloxacin and 38 (23.7%) to co-trimoxazole. Ciprofloxacin resistance was 1.9 times more common in infections acquired in Australia compared with those acquired overseas, while azithromycin resistance was 8.5 times more common in males. Conclusions We recommend ongoing reconsideration of guidelines for the treatment of shigellosis based on emerging resistance patterns. First-line therapy may need to be reconsidered based on local resistance rates due to common resistance to co-trimoxazole and ciprofloxacin. We recommend culture and susceptibility testing for suspected and proven shigellosis. Azithromycin susceptibility breakpoints for Shigella species may need to be species specific.


Epidemiology and Infection | 2017

Epidemiology and whole genome sequencing of an ongoing point-source Salmonella Agona outbreak associated with sushi consumption in western Sydney, Australia 2015

C. K. Thompson; Qinning Wang; Shopna Bag; N. Franklin; Craig Shadbolt; Peter Howard; E. J. Fearnley; Helen E. Quinn; Vitali Sintchenko; K. G. Hope

During May 2015, an increase in Salmonella Agona cases was reported from western Sydney, Australia. We examine the public health actions used to investigate and control this increase. A descriptive case-series investigation was conducted. Six outbreak cases were identified; all had consumed cooked tuna sushi rolls purchased within a western Sydney shopping complex. Onset of illness for outbreak cases occurred between 7 April and 24 May 2015. Salmonella was isolated from food samples collected from the implicated premise and a prohibition order issued. No further cases were identified following this action. Whole genome sequence (WGS) analysis was performed on isolates recovered during this investigation, with additional S. Agona isolates from sporadic-clinical cases and routine food sampling in New South Wales, January to July 2015. Clinical isolates of outbreak cases were indistinguishable from food isolates collected from the implicated sushi outlet. Five additional clinical isolates not originally considered to be linked to the outbreak were genomically similar to outbreak isolates, indicating the point-source contamination may have started before routine surveillance identified an increase. This investigation demonstrated the value of genomics-guided public health action, where near real-time WGS enhanced the resolution of the epidemiological investigation.


Western Pacific Surveillance and Response Journal | 2018

Retrospective use of whole genome sequencing to better understand an outbreak of Salmonella enterica serovar Mbandaka in New South Wales, Australia

Cassia Lindsay; James Flint; Kim Lilly; Kirsty Hope; Qinning Wang; Peter Howard; Vitali Sintchenko; David N. Durrheim

Introduction Salmonella enterica serovar Mbandaka is an infrequent cause of salmonellosis in New South Wales (NSW) with an average of 17 cases reported annually. This study examined the added value of whole genome sequencing (WGS) for investigating a non-point source outbreak of Salmonella ser. Mbandaka with limited geographical spread. Methods In February 2016, an increase in Salmonella ser. Mbandaka was noted in New South Wales, and an investigation was initiated. A WGS study was conducted three months after the initial investigation, analysing the outbreak Salmonella ser. Mbandaka isolates along with 17 human and non-human reference strains from 2010 to 2015. Results WGS analysis distinguished the original outbreak cases (n = 29) into two main clusters: Cluster A (n = 11) and Cluster B (n = 6); there were also 12 sporadic cases. Reanalysis of food consumption histories of cases by WGS cluster provided additional specificity when assessing associations. Discussion WGS has been widely acknowledged as a promising high-resolution typing tool for enteric pathogens. This study was one of the first to apply WGS to a geographically limited cluster of salmonellosis in Australia. WGS clearly distinguished the outbreak cases into distinct clusters, demonstrating its potential value for use in real time to support non-point source foodborne disease outbreaks of limited geographical spread.

Collaboration


Dive into the Peter Howard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruiting Lan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Rockett

Children's Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge