Peter I. Nagy
University of Toledo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter I. Nagy.
Chemical Research in Toxicology | 2010
Peter I. Nagy; Christine C. Winterbourn
H₂S has been recognized as a signaling molecule and mediator of inflammation. Here, we report the kinetics and mechanism of its reaction with the neutrophil oxidant hypochlorous acid. Stopped flow studies, carried out at high pH, showed this reaction to be extremely fast, with a second-order rate constant extrapolated to be 2 × 10⁹ M⁻¹ s⁻¹ at pH 7.4. The reaction produces polysulfides rather than polythionates and may represent a novel pathway for protein Cys-sulfhydration, a recently proposed mechanism for H₂S signaling.
British Journal of Pharmacology | 2015
Zoltán Pálinkás; Paul G. Furtmüller; Attila Nagy; Christa Jakopitsch; Katharina F. Pirker; Marcin Magierowski; Katarzyna Jasnos; John L. Wallace; Christian Obinger; Peter I. Nagy
The actions of hydrogen sulfide in human physiology have been extensively studied and, although it is an essential mediator of many biological functions, the underlying molecular mechanisms of its actions are ill‐defined. To elucidate the roles of sulfide in inflammation, we have investigated its interactions with human myeloperoxidase (MPO), a major contributor to inflammatory oxidative stress.
British Journal of Pharmacology | 1999
Xi Ping Huang; Peter I. Nagy; Frederick E. Williams; Steven M. Peseckis; William S. Messer
Conserved amino acids, such as Thr in transmembrane domains (TM) V and Asn in TM VI of muscarinic receptors, may be important in agonist binding and/or receptor activation. In order to determine the functional roles of Thr192 and Asn382 in human M1 receptors in ligand binding and receptor activation processes, we created and characterized mutant receptors with Thr192 or Asn382 substituted by Ala. HM1 wild‐type (WT) and mutant receptors [HM1(Thr192Ala) and HM1(Asn382Ala)] were stably expressed in A9 L cells. The Kd values for 3H‐(R)‐QNB and Ki values for other classical muscarinic antagonists were similar at HM1(WT) and HM1(Thr192Ala) mutant receptors, yet higher at HM1(Asn382Ala) mutant receptors. Carbachol exhibited lower potency and efficacy in stimulating PI hydrolysis via HM1(Thr192Ala) mutant receptors, and intermediate agonist activity at the HM1(Asn382Ala) mutant receptors. The Asn382 residue in TM VI but not the Thr192 residue in TM V of the human M1 receptor appears to participate directly in antagonist binding. Both Thr192 and Asn382 residues are involved differentially in agonist binding and/or receptor activation processes, yet the Asn382 residue is less important than Thr192 in agonist activation of M1 receptors. Molecular modelling studies indicate that substitution of Thr192 or Asn382 results in the loss of hydrogen‐bond interactions and changes in the agonist binding mode associated with an increase in hydrophobic interactions between ligand and receptor.
International Journal of Molecular Sciences | 2014
Peter I. Nagy
A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed.
Journal of Chemical Theory and Computation | 2007
Peter I. Nagy; Giuliano Alagona; Caterina Ghio
Tautomeric equilibria have been theoretically calculated for isonicotinic acid (neutral and zwitterionic forms), the 4-pyridone/4-hydroxypyridine system, and the keto-enol transformation for acetylacetone in vacuo and in tetrahydrofuran, methanol, and water solvents. Solvent, basis set, and cavity model effects have been studied in the integral equation formalism for the polarizable continuum model (IEF-PCM)/B3LYP framework, as well as the effect of the procedure, CHELPG or RESP, applied in fitting atomic charges to the in-solution molecular electrostatic potential (ELPO). The in-solution optimized geometries obtained at the IEF-PCM/B3LYP/6-31G* and 6-311++G** levels differ moderately but deviate from their gas-phase counterparts. Atomic charges fitted to the in-solution ELPO show small variations in the considered solvents, as well as when the united-atom cavity model, or a model with explicit consideration of polar hydrogens and scaled Bondi radii, has been applied. In contrast, the fitting procedure considerably affects the derived charges producing more separated atomic charges when the CHELPG rather than the RESP procedure is utilized. The fitted charges increase up to 20% in absolute value when the basis set is enlarged from 6-31G* to 6-311++G** in the IEF-PCM/B3LYP calculations. The relative free energy, calculated as ΔGtot = ΔEint + ΔG(solv) + ΔGthermal + (symmetry correction), in an ab initio/density funtional theory (DFT) + free energy perturbation (FEP)/Monte Carlo (MC) approximation strongly depends on the accepted value for the relative internal energy, ΔEint, of the tautomers. ΔEint is to be calculated at the IEF-PCM/QCISD(T)/cc-pVTZ//IEF-PCM/B3LYP/6-31G* level for the isonicotinic acid tautomers for producing relative free energies in aqueous solution close to experimental values. In other solvents, for this system and for the other two tautomeric equilibria, calculation of ΔEint at the IEF-PCM/B3LYP/6-31G* level produces ΔGtot in agreement up to 1 kcal/mol with the experimental values. FEP/MC ΔG(solv) calculations provide robust results with RESP charges derived by a fit to the in-solution ELPO generated at the IEF-PCM/B3LYP/6-31G* level. Molecular dynamics simulations pointed out that isonicotinic acid forms a dimeric zwitterion in tetrahydrofuran, in contrast to what happens in aqueous solution, and this structural peculiarity was interpreted as the reason for the failure of the ab initio/DFT + FEP/MC method in this particular solution.
Physical Chemistry Chemical Physics | 2004
Peter I. Nagy; Krisztina Takács-Novák
Protonation macro- and microconstants have been determined experimentally for the 4-aminophenol molecule and five hydroxy-substituted 2-phenylethylamines: tyramine, octopamine, dopamine, norepinephrine and epinephrine. In aqueous solution, 4-aminophenol is in the form of the neutral zero-net-charge tautomer, whereas (hydroxyphenyl)ethylamines exhibit tautomeric and conformational equilibria between the zwitterionic (zw) and the neutral (n) forms. The zw/n ratio was measured in the range of 0.09–7.43. No evident correlation has been found between the structural changes and changes in the zw/n values for this set of compounds. Polarizable continuum solvent calculations in the SCIPCM and PCM approximations and explicit solvent Monte Carlo simulations have been performed for theoretical investigation of tautomeric/conformational equilibria for the 4-aminophenol, tyramine and dopamine. Gas-phase and in-solution geometry optimizations were carried out mostly at the DFT/B3LYP/6-31G* level followed by B3LYP/6-311++G** single point calculations. All calculations found the neutral form as the stable one for the 4-aminophenol molecule in aqueous solution with an aniline-type amino group. Continuum solvent calculations underestimate the stability of the zwitterion relative to the neutral form for glycine and tyramine with an aliphatic amine group in the molecule. The calculated values are subject to a large basis set effect for tyramine. For explicit solvent calculations, an atomic charge set has been proposed where the charges were fitted to the molecular electrostatic potential calculated by using the self-consistent in-solution wave function. Using PCM/B3LYP/6-31G*-based atomic charges in Monte Carlo simulations, the preference of the zwitterionic tyramine was demonstrated. For reaching a better accord with the experimental free energy difference, corrections including intermolecular solute–solvent vibrational entropies are to be considered. Theoretical studies for the trans dopamine zwitterion predict the preference of the 4-OH form over the 3-OH isomer.
Journal of Physical Chemistry B | 2010
Peter I. Nagy; Paul W. Erhardt
Salt-bridge formation between Asp/Glu···Lys and Asp/Glu···Arg side chains has been studied by model systems including formic and acetic acids as proton donors and methylamine, guanidine, and methylguanidine as proton acceptors. Calculations have been performed up to the CCSD(T)(CBS)//MP2/aug-cc-pvtz level with formic acid proton donors. Complexes formed with acetic acid were studied at the CCSD(T)/aug-cc-pvdz//MP2/aug-cc-pvdz level. Protein environments of low and moderate polarity were mimicked by a continuum solvent with dielectric constants (ε) set to 5 and 15, respectively. Free energy differences, ΔG(tot), were calculated for the neutral, hydrogen-bonded form and for the tautomeric ion pair. These values predict that a salt bridge is not favored for the Asp/Glu···Lys pair, even in an environment with ε as large as 15. In contrast, the Asp/Glu···Arg salt bridge is feasible even in an environment with ε = 5. Charge transfers for the complexes were calculated on the basis of CHELPG and AIM charges.
Journal of Physical Chemistry B | 2008
Peter I. Nagy; Gergely Völgyi; Krisztina Takács-Novák
Monte Carlo simulations in the NpT ensembles have been performed for the structure exploration of aqueous 1,4-dioxane solutions. Three different systems with all-atom dioxane:TIP4P water molar compositions of 2:500 (code:D2), 8:465 (D8), and 17:425 (D17) modeled solutions of 0.22, 0.88, and 1.86 mol/dm3 concentrations, respectively, at T = 298 K and p = 1 atm. The calculated solution densities increase from 0.992 to 1.002 g/cm3 with increasing dioxane concentration and approach the experimentally determined densities within 1%. This close agreement was achieved by utilizing RESP charges fitted to the in-solution IEF-PCM/B3LYP/6-31G* electrostatic potential of dioxane taken in its chair conformation and recently developed C, H steric parameters for ethers for calculations with a 12-6-1 all-atom potential. Solution structure analyses pointed out that the dioxane molecules arrange in the solutions with favorable distances of 4-8 angstroms for the ring symmetry centers. Within this range not only pairs of rings but triangular triads and tetrads have also been observed with center-center distances <8 angstroms. For the D8 system, about 25% of the sampled configurations included such a triad. In the case of the D17 model, two simulations starting from different solution configuration predicted different degrees for the dioxane aggregation in aqueous solution. In the more aggregated structure 3-21 triads are consistently maintained and 1-2 tetrads are formed in 58% of the configurations. Each dioxane oxygen forms about one hydrogen bond, on average, to a water molecule in the 0.22-1.86 molar range. The most likely O(dioxane)...H(water) hydrogen bond distance is 1.75-1.80 angstroms compared to the optimal distance of 1.72 angstroms in the isolated dimer. The optimal dioxane-water interaction energy of -5.65 kcal/mol indicates a remarkable hydrogen-bond acceptor character for dioxane.
Pharmaceutica Acta Helvetiae | 2000
William S. Messer; W.G. Rajeswaran; Yang Cao; Hai Jun Zhang; Afif A. El-Assadi; Colleen Dockery; Jill Liske; John O'Brien; Frederick E. Williams; Xi Ping Huang; Mary Elizabeth Wroblewski; Peter I. Nagy; Steven M. Peseckis
Cholinergic neurons degenerate in Alzheimers disease, resulting in cognitive impairments and memory deficits, and drug development efforts have focused on selective M1 muscarinic agonists. 5-(3-Ethyl-1,2,4- oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine trifluoroacetic acid (CDD-0102) stimulates M1 muscarinic receptors in rat brain [Messer, W.S., Jr., Abuh, Y.F., Liu, Y., Periyasamy, S., Ngur, D.O., Edgar, M.A., El-Assadi, A.A., Sbeih, S., Dunbar, P.G., Roknich, S., Rho, T., Fang, Z., Ojo, B., Zhang, H., Huzl, J.J., III, Nagy, P.I., 1997a. J. Med. Chem. 40, 1230-1246.] and improves memory function in rats with lesions of the basal forebrain cholinergic system. Moreover, CDD-0102 exhibits oral bioavailability, few side effects and low toxicity, and thus represents a viable candidate for clinical studies. Despite the development of functionally selective agonists such as xanomeline and CDD-0102, there is room for improvements in ligand affinity and selectivity. The high degree of amino acid homology within transmembrane domains has hindered the development of truly selective agonists. Site-directed mutagenesis, biochemical and molecular modeling studies have identified key amino acid residues such as Thr192 and Asn382 in the binding of agonist to M1 receptors [Huang, X.P., Nagy, P.I., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1999. Br. J. Pharmacol. 126, 735-745.]. Recent work has implicated residues at the top of transmembrane domain VI in the binding of muscarinic agonists and activation of M1 receptors [Huang, X.P., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1998. J. Pharmacol. Exp. Ther. 286, 1129-1139.]. Thus, residues such as Ser388 represent molecular targets for the further development of agonists with improved M1 receptor affinity, selectivity and activity.
Journal of Physical Chemistry B | 2010
Peter I. Nagy; Aditya Maheshwari; Yong-Wah Kim; William S. Messer
Theoretical calculations were carried out for studying the tautomeric protonation of N-methylpiperazine as a prototype six-member aliphatic ring containing a secondary and a tertiary nitrogen atom. The protonation was investigated in three solvents, water, acetonitrile, and dichloromethane. Calculations were performed up to the B3LYP/aug-cc-pvtz and QCISD(T)/CBS levels by applying the IEF-PCM polarizable continuum dielectric solvent model. Relative solvation free energies also were calculated upon explicit solvent models by utilizing the free-energy perturbation theory as implemented in Monte Carlo simulations. The relative free energy for the N-methylpiperazine tautomer protonated at the secondary (NMps) rather than at the tertiary (NMpt) nitrogen was calculated at a ratio of 47/53 in infinitely dilute aqueous solution. The ratio further decreased in lower-polarity solvents. In contrast, NMR experiments suggested that the protonation takes place primarily at the secondary nitrogen in 0.37 molar aqueous solution with NMps/NMpt = 80/20. The NMps tautomer was exclusive in dichloromethane at the same concentration. The discrepancy between theory and experiment was resolved by considering association equilibria in parallel with the protonation for the solute. As a result, the theoretically predicted tautomer ratios were obtained in close agreement with the experimental values. The NMps tautomer could form a preferable dimeric structure, where one or two chloride anion(s) was/were in hydrogen bonds with protons of the associating monomers. The calculations suggest that the proton relocation may take place by solvent assistance in water or along an intramolecular proton jump in the twist-boat conformation. The predicted activation free energy was about 10 kcal/mol on the basis of variable-temperature NMR experiments in DCM.