Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Artymiuk is active.

Publication


Featured researches published by Peter J. Artymiuk.


Structure | 1995

The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures

Kitty S. P. Yip; Timothy J. Stillman; K.L. Britton; Peter J. Artymiuk; Patrick J. Baker; Svetlana E. Sedelnikova; Paul C. Engel; Alessandra Pasquo; Roberta Chiaraluce; Valerio Consalvi; Roberto Scandurra; David W. Rice

BACKGROUND The hyperthermophile Pyrococcus furiosus is one of the most thermostable organisms known, with an optimum growth temperature of 100 degrees C. The proteins from this organism display extreme thermostability. We have undertaken the structure determination of glutamate dehydrogenase from P. furiosus in order to gain further insights into the relationship between molecular structure and thermal stability. RESULTS The structure of P. furiosus glutamate dehydrogenase, a homohexameric enzyme, has been determined at 2.2 A resolution and compared with the structure of glutamate dehydrogenase from the mesophile Clostridium symbiosum. CONCLUSIONS Comparison of the structures of these two enzymes has revealed one major difference: the structure of the hyperthermophilic enzyme contains a striking series of ion-pair networks on the surface of the protein subunits and buried at both interdomain and intersubunit interfaces. We propose that the formation of such extended networks may represent a major stabilizing feature associated with the adaptation of enzymes to extreme temperatures.


FEBS Letters | 1989

Identification of the ferroxidase centre in ferritin

David M. Lawson; Amyra Treffry; Peter J. Artymiuk; Pauline M. Harrison; Stephen J. Yewdall; Alessandra Luzzago; Gianne Cesareni; Sonia Levi; Paolo Arosio

Ferroxidase activity in human H‐chain ferritin has been studied with the aid of site‐directed mutagenesis. A site discovered by X‐ray crystallography has now been identified as the ferroxidase centre. This centre is present only in H‐chains and is located within the four‐helix bundle of the chain fold.


Structure | 2001

Crystal Structure of Manganese Catalase from Lactobacillus plantarum

Vladimir V. Barynin; Mei M. Whittaker; Svetlana V. Antonyuk; Victor S. Lamzin; Pauline M. Harrison; Peter J. Artymiuk; James W. Whittaker

BACKGROUND Catalases are important antioxidant metalloenzymes that catalyze disproportionation of hydrogen peroxide, forming dioxygen and water. Two families of catalases are known, one having a heme cofactor, and the other, a structurally distinct family containing nonheme manganese. We have solved the structure of the mesophilic manganese catalase from Lactobacillus plantarum and its azide-inhibited complex. RESULTS The crystal structure of the native enzyme has been solved at 1.8 A resolution by molecular replacement, and the azide complex of the native protein has been solved at 1.4 A resolution. The hexameric structure of the holoenzyme is stabilized by extensive intersubunit contacts, including a beta zipper and a structural calcium ion crosslinking neighboring subunits. Each subunit contains a dimanganese active site, accessed by a single substrate channel lined by charged residues. The manganese ions are linked by a mu1,3-bridging glutamate carboxylate and two mu-bridging solvent oxygens that electronically couple the metal centers. The active site region includes two residues (Arg147 and Glu178) that appear to be unique to the Lactobacillus plantarum catalase. CONCLUSIONS A comparison of L. plantarum and T. thermophilus catalase structures reveals the existence of two distinct structural classes, differing in monomer design and the organization of their active sites, within the manganese catalase family. These differences have important implications for catalysis and may reflect distinct biological functions for the two enzymes, with the L. plantarum enzyme serving as a catalase, while the T. thermophilus enzyme may function as a catalase/peroxidase.


Journal of Molecular Biology | 1990

Use of techniques derived from graph theory to compare secondary structure motifs in proteins

Eleanor M. Mitchell; Peter J. Artymiuk; David W. Rice; Peter Willett

A substructure matching algorithm is described that can be used for the automatic identification of secondary structural motifs in three-dimensional protein structures from the Protein Data Bank. The proteins and motifs are stored for searching as labelled graphs, with the nodes of a graph corresponding to linear representations of helices and strands and the edges to the inter-line angles and distances. A modification of Ullmans subgraph isomorphism algorithm is described that can be used to search these graph representations. Tests with patterns from the protein structure literature demonstrate both the efficiency and the effectiveness of the search procedure, which has been implemented in FORTRAN 77 on a MicroVAX-II system, coupled to the molecular fitting program FRODO on an Evans and Sutherland PS300 graphics system.


Science | 1996

Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction.

John B. Rafferty; Svetlana E. Sedelnikova; David Hargreaves; Peter J. Artymiuk; Patrick J. Baker; Gary J. Sharples; Akeel A. Mahdi; Robert G. Lloyd; David W. Rice

The Escherichia coli DNA binding protein RuvA acts in concert with the helicase RuvB to drive branch migration of Holliday intermediates during recombination and DNA repair. The atomic structure of RuvA was determined at a resolution of 1.9 angstroms. Four monomers of RuvA are related by fourfold symmetry in a manner reminiscent of a four-petaled flower. The four DNA duplex arms of a Holliday junction can be modeled in a square planar configuration and docked into grooves on the concave surface of the protein around a central pin that may facilitate strand separation during the migration reaction. The model presented reveals how a RuvAB-junction complex may also accommodate the resolvase RuvC.


Cell | 2000

E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy.

Alistair J. Wallace; Timothy J. Stillman; Angela Atkins; Stuart J. Jamieson; Per A. Bullough; Jeffrey Green; Peter J. Artymiuk

Hemolysin E (HlyE) is a novel pore-forming toxin of Escherichia coli, Salmonella typhi, and Shigella flexneri. Here we report the X-ray crystal structure of the water-soluble form of E. coli HlyE at 2.0 A resolution and the visualization of the lipid-associated form of the toxin in projection at low resolution by electron microscopy. The crystal structure reveals HlyE to be the first member of a new family of toxin structures, consisting of an elaborated helical bundle some 100 A long. The electron micrographs show how HlyE oligomerizes in the presence of lipid to form transmembrane pores. Taken together, the data from these two structural techniques allow us to propose a simple model for the structure of the pore and for membrane interaction.


Bioinformatics | 2003

Protein Structures and Information Extraction from Biological Texts: The PASTA System

Robert J. Gaizauskas; George Demetriou; Peter J. Artymiuk; Peter Willett

MOTIVATION The rapid increase in volume of protein structure literature means useful information may be hidden or lost in the published literature and the process of finding relevant material, sometimes the rate-determining factor in new research, may be arduous and slow. RESULTS We describe the Protein Active Site Template Acquisition (PASTA) system, which addresses these problems by performing automatic extraction of information relating to the roles of specific amino acid residues in protein molecules from online scientific articles and abstracts. Both the terminology recognition and extraction capabilities of the system have been extensively evaluated against manually annotated data and the results compare favourably with state-of-the-art results obtained in less challenging domains. PASTA is the first information extraction (IE) system developed for the protein structure domain and one of the most thoroughly evaluated IE system operating on biological scientific text to date. AVAILABILITY PASTA makes its extraction results available via a browser-based front end: http://www.dcs.shef.ac.uk/nlp/pasta/. The evaluation resources (manually annotated corpora) are also available through the website: http://www.dcs.shef.ac.uk/nlp/pasta/results.html.


Journal of Molecular Biology | 1992

Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 A resolution.

Janet C. Cheetham; Peter J. Artymiuk; D.C. Phillips

The structure of the tri-N-acetylchitotriose inhibitor complex of hen egg-white lysozyme has been refined at 1.75 A resolution, using data collected from a complex crystal with ligand bound at less than full occupancy. To determine the exact value of the inhibitor occupancy, a model comprising unliganded and sugar-bound protein molecules was generated and refined against the 1.75 A data, using a modified version of the Hendrickson & Konnert least-squares procedure. The crystallographic R-factor for the model was found to fall to a minimum at 55% bound sugar. Conventional refinement assuming unit occupancy was found to yield incorrect thermal and positional parameters. Application of the same refinement procedures to an earlier 2.0 A data set, collected independently on different complex crystals by Blake et al. gave less consistent results than the 1.75 A refinement. From an analysis of the high resolution structure a detailed picture of the protein-carbohydrate interactions in the non-productive complex has emerged, together with the conformation and mobility changes that accompany ligand binding. The specificity of interaction between the protein and inhibitor, bound in subsites A to C of the active site, is seen to be generated primarily by an extensive network of hydrogen bonds, both to the protein itself and to bound solvent molecules. The latter also play an important role in maintaining the structural integrity of the active site cleft in the apo-protein.


Trends in Biochemical Sciences | 1997

THE ACONITASE FAMILY : THREE STRUCTURAL VARIATIONS ON A COMMON THEME

Megan J. Gruer; Peter J. Artymiuk; John R. Guest

The aconitase family contains a diverse group of iron-sulphur (Fe-S) isomerases and two types of iron regulatory protein (IRP). Structural comparisons have revealed three architecturally distinct variants in which one of the four structural domains is covalently linked at either the amino- or carboxy-terminal end of a single polypeptide or else this domain exists as an independent subunit.


Structure | 1995

Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase.

John B. Rafferty; J.William Simon; Clair Baldock; Peter J. Artymiuk; Patrick J. Baker; Antoine R. Stuitje; Antoni R. Slabas; David W. Rice

BACKGROUND Enoyl acyl carrier protein reductase (ENR) catalyzes the NAD(P)H-dependent reduction of trans-delta 2-enoyl acyl carrier protein, an essential step in de novo fatty acid biosynthesis. Plants contain both NADH-dependent and separate NADPH-dependent ENR enzymes which form part of the dissociable type II fatty acid synthetase. Highly elevated levels of the NADH-dependent enzyme are found during lipid deposition in maturing seeds of oilseed rape (Brassica napus). RESULTS The crystal structure of an ENR-NAD binary complex has been determined at 1.9 A resolution and consists of a homotetramer in which each subunit forms a single domain comprising a seven-stranded parallel beta sheet flanked by seven alpha helices. The subunit has a topology highly reminiscent of a dinucleotide-binding fold. The active site has been located by difference Fourier analysis of data from crystals equilibrated in NADH. CONCLUSIONS The structure of ENR shows a striking similarity with the epimerases and short-chain alcohol dehydrogenases, in particular, 3 alpha,20 beta-hydroxysteroid dehydrogenase (HSD). The similarity with HSD extends to the conservation of a catalytically important lysine that stabilizes the transition state and to the use of a tyrosine as a base--with subtle modifications arising from differing requirements of the reduction chemistry.

Collaboration


Dive into the Peter J. Artymiuk's collaboration.

Researchain Logo
Decentralizing Knowledge