Peter J. Hermanson
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter J. Hermanson.
The Plant Cell | 2013
Steven R. Eichten; Roman Briskine; Jawon Song; Qing Li; Ruth A. Swanson-Wagner; Peter J. Hermanson; Amanda J. Waters; Evan Starr; Patrick T. West; Peter Tiffin; Chad L. Myers; Matthew W. Vaughn; Nathan M. Springer
This study examines the DNA methylation patterns of a diverse set of maize lines to show that many methylation variants are associated with local genetic variation, some of which may be due to specific transposon insertion variation. These results provide insight into how DNA methylation varies within a crop and highlight the complex nature of genetic and epigenetic influences on DNA methylation. DNA methylation is a chromatin modification that is frequently associated with epigenetic regulation in plants and mammals. However, genetic changes such as transposon insertions can also lead to changes in DNA methylation. Genome-wide profiles of DNA methylation for 20 maize (Zea mays) inbred lines were used to discover differentially methylated regions (DMRs). The methylation level for each of these DMRs was also assayed in 31 additional maize or teosinte genotypes, resulting in the discovery of 1966 common DMRs and 1754 rare DMRs. Analysis of recombinant inbred lines provides evidence that the majority of DMRs are heritable. A local association scan found that nearly half of the DMRs with common variation are significantly associated with single nucleotide polymorphisms found within or near the DMR. Many of the DMRs that are significantly associated with local genetic variation are found near transposable elements that may contribute to the variation in DNA methylation. Analysis of gene expression in the same samples used for DNA methylation profiling identified over 300 genes with expression patterns that are significantly associated with DNA methylation variation. Collectively, our results suggest that DNA methylation variation is influenced by genetic and epigenetic changes that are often stably inherited and can influence the expression of nearby genes.
PLOS Genetics | 2011
Steve R. Eichten; Ruth A. Swanson-Wagner; James C. Schnable; Amanda J. Waters; Peter J. Hermanson; Sanzhen Liu; Cheng-Ting Yeh; Yi Jia; Karla Gendler; Michael Freeling; Matthew W. Vaughn; Nathan M. Springer
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation.
The Plant Cell | 2014
Qing Li; Steven R. Eichten; Peter J. Hermanson; Virginia M. Zaunbrecher; Jawon Song; Jennifer Wendt; Heidi Rosenbaum; Thelma F. Madzima; Amy E. Sloan; Ji Huang; Daniel Burgess; Todd Richmond; Karen M. McGinnis; Robert B. Meeley; Olga N. Danilevskaya; Matthew W. Vaughn; Shawn M. Kaeppler; Jeffrey A. Jeddeloh; Nathan M. Springer
Genetic analyses of maize genes in DNA methylation pathways reveal differences between maize and Arabidopsis, including evidence that DNA methylation is required for growth and development in maize. DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.
Plant Physiology | 2007
Robert M. Stupar; Peter J. Hermanson; Nathan M. Springer
Plant endosperm cells have a nuclear ratio of two maternal genomes to one paternal genome. This 2 to 1 dosage relationship provides a unique system for studying the additivity of gene expression levels in reciprocal hybrids. A combination of microarray profiling and allele-specific expression analysis was performed using RNA isolated from endosperm tissues of maize (Zea mays) inbred lines B73 and Mo17 and their reciprocal hybrids at two developmental stages, 13 and 19 d after pollination. The majority of genes exhibited additive expression in reciprocal hybrids based on microarray analyses. However, a substantial number of genes exhibited nonadditive expression patterns, including maternal like, paternal like, high parent like, low parent like, and expression patterns outside the range of the parental inbreds. The frequency of hybrid expression patterns outside of the parental range in maize endosperm tissue is much higher than that observed for vegetative tissues. For a set of 90 genes, allele-specific expression assays were employed to monitor allelic bias and regulatory variation. Eight of these genes exhibited evidence for maternally or paternally biased expression at multiple stages of endosperm development and are potential examples of differential imprinting. Our data indicate that parental effects on gene expression are much stronger in endosperm than in vegetative tissues.
Plant Physiology | 2007
Karen M. McGinnis; Nick Murphy; A. R. Carlson; Anisha Akula; Chakradhar Akula; Heather Basinger; Michelle D. Carlson; Peter J. Hermanson; Nives Kovacevic; M. Annie McGill; Vishwas Seshadri; Jessica Yoyokie; Karen C. Cone; Heidi F. Kaeppler; Shawn M. Kaeppler; Nathan M. Springer
A large-scale functional genomics project was initiated to study the function of chromatin-related genes in maize (Zea mays). Transgenic lines containing short gene segments in inverted repeat orientation designed to reduce expression of target genes by RNA interference (RNAi) were isolated, propagated, and analyzed in a variety of assays. Analysis of the selectable marker expression over multiple generations revealed that most transgenes were transmitted faithfully, whereas some displayed reduced transmission or transgene silencing. A range of target-gene silencing efficiencies, from nondetectable silencing to nearly complete silencing, was revealed by semiquantitative reverse transcription-PCR analysis of transcript abundance for the target gene. In some cases, the RNAi construct was able to cause a reduction in the steady-state RNA levels of not only the target gene, but also another closely related gene. Correlation of silencing efficiency with expression level of the target gene and sequence features of the inverted repeat did not reveal any factors capable of predicting the silencing success of a particular RNAi-inducing construct. The frequencies of success of this large-scale project in maize, together with parameters for optimization at various steps, should serve as a useful framework for designing future RNAi-based functional genomics projects in crop plants.
Genetics | 2014
Qing Li; Steven R. Eichten; Peter J. Hermanson; Nathan M. Springer
DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance. DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.
Nucleic Acids Research | 2015
Qing Li; Masako Suzuki; Jennifer Wendt; Nicole Patterson; Steven R. Eichten; Peter J. Hermanson; Dawn Green; Jeffrey A. Jeddeloh; Todd Richmond; Heidi Rosenbaum; Daniel Burgess; Nathan M. Springer; John M. Greally
We present a capture-based approach for bisulfite-converted DNA that allows interrogation of pre-defined genomic locations, allowing quantitative and qualitative assessments of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) at CG dinucleotides and in non-CG contexts (CHG, CHH) in mammalian and plant genomes. We show the technique works robustly and reproducibly using as little as 500 ng of starting DNA, with results correlating well with whole genome bisulfite sequencing data, and demonstrate that human DNA can be tested in samples contaminated with microbial DNA. This targeting approach will allow cell type-specific designs to maximize the value of 5mC and 5hmC sequencing.
Genetics | 2014
Scott C. Stelpflug; Steven R. Eichten; Peter J. Hermanson; Nathan M. Springer; Shawn M. Kaeppler
Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states.
The Plant Genome | 2013
Steven R. Eichten; Matthew W. Vaughn; Peter J. Hermanson; Nathan M. Springer
Chromatin modifications, such as DNA methylation, can provide heritable, epigenetic regulation of gene expression in the absence of genetic changes. A role for DNA methylation in meiotically stable marking of repetitive elements and other sequences has been demonstrated in plants. Methylation of DNA is also proposed to play a role in development through providing a mitotic memory of gene expression states established during cellular differentiation. We sought to clarify the relative levels of DNA methylation variation among different genotypes and tissues in maize (Zea mays L.). We have assessed genomewide DNA methylation patterns in leaf, immature tassel, embryo, and endosperm tissues of two inbred maize lines: B73 and Mo17. There are hundreds of regions of differential methylation present between the two genotypes. In general, the same regions exhibit differential methylation between B73 and Mo17 in each of the tissues that were surveyed. In contrast, there are few examples of tissue‐specific DNA methylation variation. Only a subset of regions with tissue‐specific variation in DNA methylation show similar patterns in both genotypes of maize and even fewer are associated with altered gene expression levels among the tissues. Our data indicates a limited impact of DNA methylation on developmental gene regulation within maize.
Archive | 2007
Karen M. McGinnis; Nick Murphy; A. R. Carlson; Anisha Akula; Chakradhar Akula; Heather Basinger; Michelle C. Carlson; Peter J. Hermanson; Nives Kovacevic; M. McGill; Vishwas Seshadri; Jessica Yoyokie; Karen C. Cone; Heidi F. Kaeppler; Shawn M. Kaeppler; Nathan M. Springer