Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Hutchinson is active.

Publication


Featured researches published by Peter J. Hutchinson.


The Lancet | 2009

Use of drains versus no drains after burr-hole evacuation of chronic subdural haematoma: a randomised controlled trial

Thomas Santarius; Peter J. Kirkpatrick; Dharmendra Ganesan; Hui Ling Chia; Ibrahim Jalloh; Peter Smielewski; Hugh K. Richards; Hani J. Marcus; Richard A. Parker; Stephen J. Price; Ramez W. Kirollos; John D. Pickard; Peter J. Hutchinson

BACKGROUND Chronic subdural haematoma causes serious morbidity and mortality. It recurs after surgical evacuation in 5-30% of patients. Drains might reduce recurrence but are not used routinely. Our aim was to investigate the effect of drains on recurrence rates and clinical outcomes. METHODS We did a randomised controlled trial at one UK centre between November, 2004, and November, 2007. 269 patients aged 18 years and older with a chronic subdural haematoma for burr-hole drainage were assessed for eligibility. 108 were randomly assigned by block randomisation to receive a drain inserted into the subdural space and 107 to no drain after evacuation. The primary endpoint was recurrence needing redrainage. The trial was stopped early because of a significant benefit in reduction of recurrence. Analyses were done on an intention-to-treat basis. This study is registered with the International Standard Randomised Controlled Trial Register (ISRCTN 97314294). FINDINGS Recurrence occurred in ten of 108 (9.3%) people with a drain, and 26 of 107 (24%) without (p=0.003; 95% CI 0.14-0.70). At 6 months mortality was nine of 105 (8.6%) and 19 of 105 (18.1%), respectively (p=0.042; 95% CI 0.1-0.99). Medical and surgical complications were much the same between the study groups. INTERPRETATION Use of a drain after burr-hole drainage of chronic subdural haematoma is safe and associated with reduced recurrence and mortality at 6 months. FUNDING Academy of Medical Sciences, Health Foundation, and NIHR Biomedical Research Centre (Neurosciences Theme).


Intensive Care Medicine | 2004

Consensus Meeting on Microdialysis in Neurointensive Care

Bo-Michael Bellander; Emmanuel Cantais; Per Enblad; Peter J. Hutchinson; Carl-Henrik Nordström; Claudia S. Robertson; Juan Sahuquillo; Martin Smith; Nino Stocchetti; Urban Ungerstedt; Andreas Unterberg; Niels Vidiendal Olsen

BackgroundMicrodialysis is used in many European neurointensive care units to monitor brain chemistry in patients suffering subarachnoid hemorrhage (SAH) or traumatic brain injury (TBI).DiscussionWe present a consensus agreement achieved at a meeting in Stockholm by a group of experienced users of microdialysis in neurointensive care, defining the use of microdialysis, placement of catheters, unreliable values, chemical markers, and clinical use in SAH and in TBI.ConclusionsAs microdialysis is maturing into a clinically useful technique for early detection of cerebral ischemia and secondary brain damage, there is a need to following such definition regarding when and how to use microdialysis after SAH and TBI.


Acta neurochirurgica | 2006

Decompressive craniectomy in traumatic brain injury: the randomized multicenter RESCUEicp study (www.RESCUEicp.com)

Peter J. Hutchinson; Elizabeth A. Corteen; Marek Czosnyka; A. D. Mendelow; David K. Menon; Patrick Mitchell; Graham K. Murray; John D. Pickard; E. Rickels; Juan Sahuquillo; Franco Servadei; G. M. Teasdale; Ivan Timofeev; Andreas Unterberg; Peter J. Kirkpatrick

The RESCUEicp (Randomized Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of intracranial pressure) study has been established to determine whether decompressive craniectomy has a role in the management of patients with traumatic brain injury and raised intracranial pressure that does not respond to initial treatment measures. We describe the concept of decompressive craniectomy in traumatic brain injury and the rationale and protocol of the RESCUEicp study.


Critical Care Medicine | 2012

Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury

Marcel Aries; Marek Czosnyka; Karol P. Budohoski; Luzius A. Steiner; Andrea Lavinio; Angelos G. Kolias; Peter J. Hutchinson; Ken M. Brady; David K. Menon; John D. Pickard; Peter Smielewski

Objectives: We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by determining the association between outcome and the deviation of actual CPP from CPPopt. Design: Retrospective analysis of prospectively collected data. Setting: Neurosciences critical care unit of a university hospital. Patients: A total of 327 traumatic head-injury patients admitted between 2003 and 2009 with continuous monitoring of arterial blood pressure and intracranial pressure. Measurements and Main Results: Arterial blood pressure, intracranial pressure, and CPP were continuously recorded, and pressure reactivity index was calculated online. Outcome was assessed at 6 months. An automated curve fitting method was applied to determine CPP at the minimum value for pressure reactivity index (CPPopt). A time trend of CPPopt was created using a moving 4-hr window, updated every minute. Identification of CPPopt was, on average, feasible during 55% of the whole recording period. Patient outcome correlated with the continuously updated difference between median CPP and CPPopt (chi-square = 45, p < .001; outcome dichotomized into fatal and nonfatal). Mortality was associated with relative “hypoperfusion” (CPP < CPPopt), severe disability with “hyperperfusion” (CPP > CPPopt), and favorable outcome was associated with smaller deviations of CPP from the individualized CPPopt. While deviations from global target CPP values of 60 mm Hg and 70 mm Hg were also related to outcome, these relationships were less robust. Conclusions: Real-time CPPopt could be identified during the recording time of majority of the patients. Patients with a median CPP close to CPPopt were more likely to have a favorable outcome than those in whom median CPP was widely different from CPPopt. Deviations from individualized CPPopt were more predictive of outcome than deviations from a common target CPP. CPP management to optimize cerebrovascular pressure reactivity should be the subject of future clinical trial in severe traumatic head-injury patients.


Brain | 2011

Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients

Ivan Timofeev; Keri L.H. Carpenter; Jurgens Nortje; Pippa G. Al-Rawi; M. T. O’Connell; Marek Czosnyka; Peter Smielewski; John D. Pickard; David K. Menon; Peter J. Kirkpatrick; Arun Kumar Gupta; Peter J. Hutchinson

Secondary insults can adversely influence outcome following severe traumatic brain injury. Monitoring of cerebral extracellular chemistry with microdialysis has the potential for early detection of metabolic derangements associated with such events. The objective of this study was to determine the relationship between the fundamental biochemical markers and neurological outcome in a large cohort of patients with traumatic brain injury. Prospectively collected observational neuromonitoring data from 223 patients were analysed. Monitoring modalities included digitally recorded intracranial pressure, cerebral perfusion pressure, cerebrovascular pressure reactivity index and microdialysis markers glucose, lactate, pyruvate, glutamate, glycerol and the lactate/pyruvate ratio. Outcome was assessed using the Glasgow Outcome Scale at 6 months post-injury. Patient-averaged values of parameters were used in statistical analysis, which included univariate non-parametric methods and multivariate logistic regression. Monitoring with microdialysis commenced on median (interquartile range) Day 1 (1-2) from injury and median (interquartile range) duration of monitoring was 4 (2-7) days. Averaged over the total monitoring period levels of glutamate (P = 0.048), lactate/pyruvate ratio (P = 0.044), intracranial pressure (P = 0.006) and cerebrovascular pressure reactivity index (P = 0.01) were significantly higher in patients who died. During the initial 72 h of monitoring, median glycerol levels were also higher in the mortality group (P = 0.014) and median lactate/pyruvate ratio (P = 0.026) and lactate (P = 0.033) levels were significantly lower in patients with favourable outcome. In a multivariate logistic regression model (P < 0.0001), which employed data averaged over the whole monitoring period, significant independent positive predictors of mortality were glucose (P = 0.024), lactate/pyruvate ratio (P = 0.016), intracranial pressure (P = 0.029), cerebrovascular pressure reactivity index (P = 0.036) and age (P = 0.003), while pyruvate was a significant independent negative predictor of mortality (P = 0.004). The results of this study suggest that extracellular metabolic markers are independently associated with outcome following traumatic brain injury. Whether treatment-related improvement in biochemistry translates into better outcome remains to be established.


Journal of Cerebral Blood Flow and Metabolism | 2004

Incidence and mechanisms of cerebral ischemia in early clinical head injury.

Jonathan P. Coles; Tim D. Fryer; Piotr Smielewski; Doris A. Chatfield; Luzius A. Steiner; Andrew Johnston; Stephen P. M. J. Downey; Guy B. Williams; Franklin I. Aigbirhio; Peter J. Hutchinson; Kenneth Rice; T. Adrian Carpenter; John C. Clark; John D. Pickard; David K. Menon

Antemortem demonstration of ischemia has proved elusive in head injury because regional CBF reductions may represent hypoperfusion appropriately coupled to hypometabolism. Fifteen patients underwent positron emission tomography within 24 hours of head injury to map cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), and oxygen extraction fraction (OEF). We estimated the volume of ischemic brain (IBV) and used the standard deviation of the OEF distribution to estimate the efficiency of coupling between CBF and CMRO2. The IBV in patients was significantly higher than controls (67 ± 69 vs. 2 ± 3 mL; P < 0.01). The coexistence of relative ischemia and hyperemia in some patients implies mismatching of perfusion to oxygen use. Whereas the saturation of jugular bulb blood (SjO2) correlated with the IBV (r = 0.8, P < 0.01), SjO2 values of 50% were only achieved at an IBV of 170 ± 63 mL (mean ± 95% CI), which equates to 13 ± 5% of the brain. Increases in IBV correlated with a poor Glasgow Outcome Score 6 months after injury (ρ = −0.6, P < 0.05). These results suggest significant ischemia within the first day after head injury. The ischemic burden represented by this “traumatic penumbra” is poorly detected by bedside clinical monitors and has significant associations with outcome.


Neurocritical Care | 2006

Impact of Intracranial Pressure and Cerebral Perfusion Pressure on Severe Disability and Mortality After Head Injury

Marcella Balestreri; Marek Czosnyka; Peter J. Hutchinson; Luzius A. Steiner; Magda Hiler; Piotr Smielewski; John D. Pickard

ObjectiveTo investigate the relationships between intracranial pressure (ICP), cerebral perfusion pressure (CPP), and outcome after traumatic brain injury.Material and MethodsA retrospective analysis of prospectively recorded data from 429 patients after head injury requiring intensive treatment on the Neuroscience Intensive Annex and the Neuro Critical Care Unit, Cambridge, UK.ICP, CPP, and arterial blood pressure (ABP) were continuously recorded. Mean values of pressures were compared to outcome assessed at 6 months after injury (using the Glasgow Outcome Scale).ResultsThe mortality rate was greater in those having mean ICP greater than 20 mmHg (17% below versus 47% above; p<0.00001). The mortality rate was dramatically increased for CPP below 55 mmHg (81% below versus 23% above; p<0.0001). For values of CPP greater than 95 mmHg, favorable outcome was less frequent (50% below versus 28% above; p<0.033). The rate of severe disability showed the tendency to increase with CPP (r=0.87; p=0.02), suggesting that a higher CPP does not help in achieving favorable outcomes.ICP was greater in those who died in comparison to those who survived (27±19 mmHg versus 16±6 mmHg; p<0.10–7), and CPP was lower (68±21 versus 76±10 mmHg; p<0.0002). There was no difference between mean ICP and CPP in good/moderate and severe disability outcome groups.ConclusionHigh ICP is strongly associated with fatal outcome. Excessive CPP seems to reduce the probability of achieving a favorable outcome following head trauma.


British Journal of Neurosurgery | 2001

Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension

Peter C. Whitfield; Hiren C. Patel; Peter J. Hutchinson; Marek Czosnyka; D. Parry; David K. Menon; John D. Pickard; Peter J. Kirkpatrick

Bifrontal decompressive craniectomy has been used on an ad hoc basis for the treatment of post-traumatic intracranial hypertension for more than thirty years. In this observational study we report the clinical outcome and physiological effects of the procedure in a series of 26 patients with refractory intracranial hypertension treated on a protocol driven basis. Bifrontal decompressive craniectomy was associated with significant reductions in mean ICP from 37.5 to 18.1 mmHg ( p = 0.003). In addition, craniectomy reduced the amplitude of ICP waves ( p < 0.02) and increased compensatory reserve ( p < 0.05). A favourable outcome was achieved in 69% of patients; 8% were severely disabled and 23% died. We conclude that this study provides pathophysiological evidence that bifrontal decompressive craniectomy significantly reduces posttraumatic intracranial hypertension and improves pressure dynamics. Our results support the continued use of bifrontal decompressive craniectomy in selected patients after head injury.


Journal of Cerebral Blood Flow and Metabolism | 2011

The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production.

Adel Helmy; Keri L.H. Carpenter; David K. Menon; John D. Pickard; Peter J. Hutchinson

The role of neuroinflammation is increasingly being recognised in a diverse range of cerebral pathologies, including traumatic brain injury (TBI). We used cerebral microdialysis and paired arterial and jugular bulb plasma sampling to characterise the production of 42 cytokines after severe TBI in 12 patients over 5 days. We compared two microdialysis perfusates in six patients: central nervous system perfusion fluid and 3.5% human albumin solution (HAS); 3.5% HAS has a superior fluid recovery (95.8 versus 83.3%), a superior relative recovery in 18 of 42 cytokines (versus 8 of 42), and a qualitatively superior recovery profile. All 42 cytokines were recovered from the human brain. Sixteen cytokines showed a stereotyped temporal peak, at least twice the median value for that cytokine over the monitoring period; day 1: tumour necrosis factor, interleukin (IL)7, IL8, macrophage inflammatory protein (MIP)1α, soluble CD40 ligand, GRO, IL1β, platelet derived growth factor (PDGF)-AA, MIP1β, RANTES; day 2: IL1 receptor antagonist (ra). IL6, granulocyte-colony stimulating factor (G-CSF), chemokine CXC motif ligand 10 (IP10); days 4 to 5: IL12p70, IL10. Brain extracellular fluid concentrations were significantly higher than plasma concentrations for 19 cytokines: basic fibroblast growth factor (FGF2), G-CSF, IL1α, IL1 β, IL1ra, IL3, IL6, IL8, IL10, IL12p40, IL12p70, IP10, monocyte chemotactic protein (MCP)1, MCP3, MIP1α, MIP1β, PDGF-AA, transforming growth factor (TGF)α and vascular endothelial growth factor. No clear arterio-jugular venous gradients were apparent. These data provide evidence for the cerebral production of these cytokines and show a stereotyped temporal pattern after TBI.


Anesthesia & Analgesia | 1999

Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury

Arun Kumar Gupta; Peter J. Hutchinson; Pippa G. Al-Rawi; Sanjeeva Gupta; Mike Swart; Peter J. Kirkpatrick; David K. Menon; Avijit K Datta

UNLABELLED Jugular bulb oximetry is the most widely used method of monitoring cerebral oxygenation. More recently, measurement of brain tissue oxygenation has been reported in head-injured patients. We compared the changes in brain tissue oxygen partial pressure (PbO2) with changes in jugular venous oxygen saturation (SjVO2) in response to hyperventilation in areas of brain with and without focal pathology. Thirteen patients with severe head injuries were studied. A multiparameter sensor was inserted into areas of brain with focal pathology in five patients and outside areas of focal pathology in eight patients. A fiberoptic catheter was inserted into the right jugular bulb. Patients were hyperventilated in a stepwise manner from a PaCO2 of approximately 35 mm Hg to a PaCO2 of 22 mm Hg. There was no significant change in cerebral perfusion pressure or arterial partial pressure of oxygen with hyperventilation. In areas without focal pathology, there was a good correlation between changes in SjVO2 and PbO2 (deltaSjVO2 and deltaPbO2; r2 = 0.69, P < 0.0001). In areas with focal pathology, there was no correlation between deltaSjVO, and APbO2 (r2 =0.07, P = 0.23). In this study, we demonstrated that measurement of local tissue oxygenation can highlight focal differences in regional cerebral oxygenation that are disguised when measuring SjVO2. Thus, monitoring of PbO2 is a useful addition to multimodal monitoring of patients with traumatic head injury. IMPLICATIONS Brain oxygenation is currently monitored by using jugular bulb oximetry, which attracts a number of potential artifacts and may not reflect regional changes in oxygenation. We compared this method with measurement of brain tissue oxygenation using a multiparameter sensor inserted into brain tissue. The brain tissue monitor seemed to reflect regional brain oxygenation better than jugular bulb oximetry.

Collaboration


Dive into the Peter J. Hutchinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arun Kumar Gupta

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adel Helmy

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge