Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. M. Rottier is active.

Publication


Featured researches published by Peter J. M. Rottier.


Nature | 2013

Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC

V. Stalin Raj; Huihui Mou; Saskia L. Smits; Dick H. W. Dekkers; Marcel A. Müller; Ronald Dijkman; Doreen Muth; Jeroen Demmers; Ali Moh Zaki; Ron A. M. Fouchier; Volker Thiel; Christian Drosten; Peter J. M. Rottier; Albert D. M. E. Osterhaus; Berend Jan Bosch; Bart L. Haagmans

Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.


Journal of Virology | 2003

The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex

Berend Jan Bosch; Ruurd van der Zee; Cornelis A. M. de Haan; Peter J. M. Rottier

ABSTRACT Coronavirus entry is mediated by the viral spike (S) glycoprotein. The 180-kDa oligomeric S protein of the murine coronavirus mouse hepatitis virus strain A59 is posttranslationally cleaved into an S1 receptor binding unit and an S2 membrane fusion unit. The latter is thought to contain an internal fusion peptide and has two 4,3 hydrophobic (heptad) repeat regions designated HR1 and HR2. HR2 is located close to the membrane anchor, and HR1 is some 170 amino acids (aa) upstream of it. Heptad repeat (HR) regions are found in fusion proteins of many different viruses and form an important characteristic of class I viral fusion proteins. We investigated the role of these regions in coronavirus membrane fusion. Peptides HR1 (96 aa) and HR2 (39 aa), corresponding to the HR1 and HR2 regions, were produced in Escherichia coli. When mixed together, the two peptides were found to assemble into an extremely stable oligomeric complex. Both on their own and within the complex, the peptides were highly alpha helical. Electron microscopic analysis of the complex revealed a rod-like structure ∼14.5 nm in length. Limited proteolysis in combination with mass spectrometry indicated that HR1 and HR2 occur in the complex in an antiparallel fashion. In the native protein, such a conformation would bring the proposed fusion peptide, located in the N-terminal domain of HR1, and the transmembrane anchor into close proximity. Using biological assays, the HR2 peptide was shown to be a potent inhibitor of virus entry into the cell, as well as of cell-cell fusion. Both biochemical and functional data show that the coronavirus spike protein is a class I viral fusion protein.


Lancet Infectious Diseases | 2013

Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study

Chantal Reusken; Bart L. Haagmans; Marcel A. Müller; Carlos Gutiérrez; Gert Jan Godeke; Benjamin Meyer; Doreen Muth; V. Stalin Raj; Laura de Vries; Victor Max Corman; Jan Felix Drexler; Saskia L. Smits; Yasmin E. El Tahir; Rita de Sousa; Janko van Beek; Norbert Nowotny; Kees van Maanen; Ezequiel Hidalgo-Hermoso; Berend Jan Bosch; Peter J. M. Rottier; Albert D. M. E. Osterhaus; Christian Gortázar-Schmidt; Christian Drosten; Marion Koopmans

Summary Background A new betacoronavirus—Middle East respiratory syndrome coronavirus (MERS-CoV)—has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. Methods We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. Findings 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. Interpretation MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. Funding European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.


Journal of Virology | 2000

Retargeting of Coronavirus by Substitution of the Spike Glycoprotein Ectodomain: Crossing the Host Cell Species Barrier

Lili Kuo; Gert-Jan Godeke; Martin J. B. Raamsman; Paul S. Masters; Peter J. M. Rottier

ABSTRACT Coronaviruses generally have a narrow host range, infecting one or just a few species. Using targeted RNA recombination, we constructed a mutant of the coronavirus mouse hepatitis virus (MHV) in which the ectodomain of the spike glycoprotein (S) was replaced with the highly divergent ectodomain of the S protein of feline infectious peritonitis virus. The resulting chimeric virus, designated fMHV, acquired the ability to infect feline cells and simultaneously lost the ability to infect murine cells in tissue culture. This reciprocal switch of species specificity strongly supports the notion that coronavirus host cell range is determined primarily at the level of interactions between the S protein and the virus receptor. The isolation of fMHV allowed the localization of the region responsible for S protein incorporation into virions to the carboxy-terminal 64 of the 1,324 residues of this protein. This establishes a basis for further definition of elements involved in virion assembly. In addition, fMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants, no matter how defective, that have regained the ability to replicate in murine cells.


Seminars in Virology | 1997

The Genome Organization of the Nidovirales: Similarities and Differences between Arteri-, Toro-, and Coronaviruses

Antoine A.F. de Vries; Marian C. Horzinek; Peter J. M. Rottier; Raoul J. de Groot

Abstract Viruses in the families Arteriviridae and Coronaviridae have enveloped virions which contain nonsegmented, positive-stranded RNA, but the constituent genera differ markedly in genetic complexity and virion structure. Nevertheless, there are striking resemblances among the viruses in the organization and expression of their genomes, and sequence conservation among the polymerase polyproteins strongly suggests that they have a common ancestry. On this basis, the International Committee on Taxonomy of Viruses recently established a new order, Nidovirales, to contain the two families. Here, the common traits and distinguishing features of the Nidovirales are reviewed.


The EMBO Journal | 1983

Coronavirus mRNA synthesis involves fusion of non-contiguous sequences.

Willy J. M. Spaan; H. Delius; M. Skinner; John A. Armstrong; Peter J. M. Rottier; Sjef Smeekens; B. A. M. Van Der Zeijst; Stuart G. Siddell

Positive‐stranded genomic RNA of coronavirus MHV and its six subgenomic mRNAs are synthesized in the cytoplasm of the host cell. The mRNAs are composed of leader and body sequences which are non‐contiguous on the genome and are fused together in the cytoplasm by a mechanism which appears to involve an unusual and specific ‘polymerase jumping’ event.


Virology | 2002

The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host

Cornelis A. M. de Haan; Paul S. Masters; Xiaolan Shen; Susan R. Weiss; Peter J. M. Rottier

Abstract In addition to a characteristic set of essential genes coronaviruses contain several so-called group-specific genes. These genes differ distinctly among the three coronavirus groups and are specific for each group. While the essential genes encode replication and structural functions, hardly anything is known about the products and functions of the group-specific genes. As a first step to elucidate their significance, we deleted the group-specific genes from the group 2 mouse hepatitis virus (MHV) genome via a novel targeted recombination system based on host switching (L. Kuo, G. J.Godeke, M. J. Raamsman, P. S. Masters, and P. J. M. Rottier, 2000, J. Virol. 74, 1393–1406). Thus, we obtained recombinant viruses from which the two clusters of group-specific genes were deleted either separately or in combination in a controlled genetic background. As all recombinant deletion mutant viruses appeared to be viable, we conclude that the MHV group-specific genes are nonessential, accessory genes. Importantly, all deletion mutant viruses were attenuated when inoculated into their natural host, the mouse. Therefore, deletion of the coronavirus group-specific genes seems to provide an attractive approach to generate attenuated live coronavirus vaccines.


Journal of Virology | 2005

Envelope Protein Requirements for the Assembly of Infectious Virions of Porcine Reproductive and Respiratory Syndrome Virus

E. H. J. Wissink; M. V. Kroese; H. A. R. van Wijk; F.A.M. Rijsewijk; Johanna Jacoba Maria Meulenberg; Peter J. M. Rottier

ABSTRACT Virions of porcine reproductive and respiratory syndrome virus (PRRSV) contain six membrane proteins: the major proteins GP5 and M and the minor proteins GP2a, E, GP3, and GP4. Here, we studied the envelope protein requirements for PRRSV particle formation and infectivity using full-length cDNA clones in which the genes encoding the membrane proteins were disrupted by site-directed mutagenesis. By transfection of RNAs transcribed from these cDNAs into BHK-21 cells and analysis of the culture medium using ultracentrifugation, radioimmunoprecipitation, and real-time reverse transcription-PCR, we observed that the production of viral particles is dependent on both major envelope proteins; no particles were released when either the GP5 or the M protein was absent. In contrast, particle production was not dependent on the minor envelope proteins. Remarkably, in the absence of any one of the latter proteins, the incorporation of all other minor envelope proteins was affected, indicating that these proteins interact with each other and are assembled into virions as a multimeric complex. Independent evidence for such complexes was obtained by coexpression of the minor envelope proteins in BHK-21 cells using a Semliki Forest virus expression system. By analyzing the maturation of their N-linked oligosaccharides, we found that the glycoproteins were each retained in the endoplasmic reticulum unless expressed together, in which case they were collectively transported through the Golgi complex to the plasma membrane and were even detected in the extracellular medium. As the PRRSV particles lacking the minor envelope proteins are not infectious, we hypothesize that the virion surface structures formed by these proteins function in viral entry by mediating receptor binding and/or virus-cell fusion.


Journal of Biological Chemistry | 2006

SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-expressing Cells

I-Chueh Huang; Berend Jan Bosch; Fang Li; Wenhui Li; Kyoung Hoa Lee; Sorina Ghiran; Natalya Vasilieva; Terence S. Dermody; Stephen C. Harrison; Philip R. Dormitzer; Michael Farzan; Peter J. M. Rottier; Hyeryun Choe

Viruses require specific cellular receptors to infect their target cells. Angiotensin-converting enzyme 2 (ACE2) is a cellular receptor for two divergent coronaviruses, SARS coronavirus (SARS-CoV) and human coronavirus NL63 (HCoV-NL63). In addition to hostcell receptors, lysosomal cysteine proteases are required for productive infection by some viruses. Here we show that SARS-CoV, but not HCoV-NL63, utilizes the enzymatic activity of the cysteine protease cathepsin L to infect ACE2-expressing cells. Inhibitors of cathepsin L blocked infection by SARS-CoV and by a retrovirus pseudotyped with the SARS-CoV spike (S) protein but not infection by HCoV-NL63 or a retrovirus pseudotyped with the HCoV-NL63 S protein. Expression of exogenous cathepsin L substantially enhanced infection mediated by the SARS-CoV S protein and by filovirus GP proteins but not by the HCoV-NL63 S protein or the vesicular stomatitis virus G protein. Finally, an inhibitor of endosomal acidification had substantially less effect on infection mediated by the HCoV-NL63 S protein than on that mediated by the SARS-CoV S protein. Our data indicate that two coronaviruses that utilize a common receptor nonetheless enter cells through distinct mechanisms.


PLOS Pathogens | 2011

Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway

Erik de Vries; Donna M. Tscherne; Marleen J. Wienholts; Viviana Cobos-Jiménez; Florine Scholte; Adolfo García-Sastre; Peter J. M. Rottier; Cornelis A. M. de Haan

Influenza A virus (IAV) enters host cells upon binding of its hemagglutinin glycoprotein to sialylated host cell receptors. Whereas dynamin-dependent, clathrin-mediated endocytosis (CME) is generally considered as the IAV infection pathway, some observations suggest the occurrence of an as yet uncharacterized alternative entry route. By manipulating entry parameters we established experimental conditions that allow the separate analysis of dynamin-dependent and -independent entry of IAV. Whereas entry of IAV in phosphate-buffered saline could be completely inhibited by dynasore, a specific inhibitor of dynamin, a dynasore-insensitive entry pathway became functional in the presence of fetal calf serum. This finding was confirmed with the use of small interfering RNAs targeting dynamin-2. In the presence of serum, both IAV entry pathways were operational. Under these conditions entry could be fully blocked by combined treatment with dynasore and the amiloride derivative EIPA, the hallmark inhibitor of macropinocytosis, whereas either drug alone had no effect. The sensitivity of the dynamin-independent entry pathway to inhibitors or dominant-negative mutants affecting actomyosin dynamics as well as to a number of specific inhibitors of growth factor receptor tyrosine kinases and downstream effectors thereof all point to the involvement of macropinocytosis in IAV entry. Consistently, IAV particles and soluble FITC-dextran were shown to co-localize in cells in the same vesicles. Thus, in addition to the classical dynamin-dependent, clathrin-mediated endocytosis pathway, IAV enters host cells by a dynamin-independent route that has all the characteristics of macropinocytosis.

Collaboration


Dive into the Peter J. M. Rottier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Peeters

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge