Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Psaltis is active.

Publication


Featured researches published by Peter J. Psaltis.


Journal of Cellular Physiology | 2010

Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations.

Peter J. Psaltis; Sharon Paton; Fiona See; Agnieszka Arthur; Sally K. Martin; Silviu Itescu; Stephen G. Worthley; Stan Gronthos; Andrew C.W. Zannettino

The cardiovascular therapeutic potential of bone marrow mesenchymal stromal/stem cells (MSC) is largely mediated by paracrine effects. Traditional preparation of MSC has involved plastic adherence‐isolation. In contrast, prospective immunoselection aims to improve cell isolation by enriching for mesenchymal precursor cells (MPC) at higher purity. This study compared the biological characteristics and cardiovascular trophic activity of plastic adherence‐isolated MSC (PA‐MSC) and MPC prepared from the same human donors by immunoselection for stromal precursor antigen‐1 (STRO‐1). Compared to PA‐MSC, STRO‐1‐MPC displayed greater (1) clonogenicity, (2) proliferative capacity, (3) multilineage differentiation potential, and (4) mRNA expression of mesenchymal stem cell‐related transcripts. In vitro assays demonstrated that conditioned medium from STRO‐1‐MPC had greater paracrine activity than PA‐MSC, with respect to cardiac cell proliferation and migration and endothelial cell migration and tube formation. In keeping with this, STRO‐1‐MPC exhibited higher gene and protein expression of CXCL12 and HGF. Inhibition of these cytokines attenuated endothelial tube formation and cardiac cell proliferation, respectively. Paracrine responses were enhanced by using supernatant from STRO‐1Bright MPC and diminished with STRO‐1Dim conditioned medium. Together, these findings indicate that prospective isolation gives rise to mesenchymal progeny that maintain a higher proportion of immature precursor cells compared to traditional plastic adherence‐isolation. Enrichment for STRO‐1 is also accompanied by increased expression of cardiovascular‐relevant cytokines and enhanced trophic activity. Immunoselection thus provides a strategy for improving the cardiovascular reparative potential of mesenchymal cells. J. Cell. Physiol. 223: 530–540, 2010.


Journal of Cardiovascular Magnetic Resonance | 2009

Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume

Adam J. Nelson; M. Worthley; Peter J. Psaltis; Angelo Carbone; Benjamin K. Dundon; Rae Duncan; Cynthia Piantadosi; Dennis H. Lau; Prashanthan Sanders; Gary A. Wittert; Stephen G. Worthley

BackgroundPericardial adipose tissue (PAT) has been shown to be an independent predictor of coronary artery disease. To date its assessment has been restricted to the use of surrogate echocardiographic indices such as measurement of epicardial fat thickness over the right ventricular free wall, which have limitations. Cardiovascular magnetic resonance (CMR) offers the potential to non-invasively assess total PAT, however like other imaging modalities, CMR has not yet been validated for this purpose. Thus, we sought to describe a novel technique for assessing total PAT with validation in an ovine model.Methods11 merino sheep were studied. A standard clinical series of ventricular short axis CMR images (1.5T Siemens Sonata) were obtained during mechanical ventilation breath-holds. Beginning at the mitral annulus, consecutive end-diastolic ventricular images were used to determine the area and volume of epicardial, paracardial and pericardial adipose tissue. In addition adipose thickness was measured at the right ventricular free wall. Following euthanasia, the paracardial adipose tissue was removed from the ventricle and weighed to allow comparison with corresponding CMR measurements.ResultsThere was a strong correlation between CMR-derived paracardial adipose tissue volume and ex vivo paracardial mass (R2 = 0.89, p < 0.001). In contrast, CMR measurements of corresponding RV free wall paracardial adipose thickness did not correlate with ex vivo paracardial mass (R2 = 0.003, p = 0.878).ConclusionIn this ovine model, CMR-derived paracardial adipose tissue volume, but not the corresponding and conventional measure of paracardial adipose thickness over the RV free wall, accurately reflected paracardial adipose tissue mass. This study validates for the first time, the use of clinically utilised CMR sequences for the accurate and reproducible assessment of pericardial adiposity. Furthermore this non-invasive modality does not use ionising radiation and therefore is ideally suited for future studies of PAT and its role in cardiovascular risk prediction and disease in clinical practice.


Circulation | 2014

Trends in Cause of Death after Percutaneous Coronary Intervention

Daniel B. Spoon; Peter J. Psaltis; Mandeep Singh; David R. Holmes; Bernard J. Gersh; Charanjit S. Rihal; Ryan J. Lennon; Issam Moussa; Robert D. Simari; Rajiv Gulati

Background— The impact of changing demographics on causes of long-term death after percutaneous coronary intervention (PCI) remains incompletely defined. Methods and Results— We evaluated trends in cause-specific long-term mortality after index PCI performed at a single center from 1991 to 2008. Deaths were ascertained by scheduled prospective surveillance. Cause was determined via telephone interviews, medical records, autopsy reports, and death certificates. Competing-risks analysis of cause-specific mortality was performed using 3 time periods of PCI (1991–1996, 1997–2002, and 2003–2008). Final follow-up was December 31, 2012. A total of 19 077 patients survived index PCI hospitalization, of whom 6988 subsequently died (37%, 4.48 per 100 person-years). Cause was determined in 6857 (98.1%). Across 3 time periods, there was a 33% decline in cardiac deaths at 5 years after PCI (incidence: 9.8%, 7.4%, and 6.6%) but a 57% increase in noncardiac deaths (7.1%, 8.5%, and 11.2%). Only 36.8% of deaths in the recent era were cardiac. Similar trends were observed regardless of age, extent of coronary disease, or PCI indication. After adjustment for baseline variables, there was a 50% temporal decline in cardiac mortality but no change in noncardiac mortality. The decline in cardiac mortality was driven by fewer deaths from myocardial infarction/sudden death (P<0.001) but not heart failure (P=0.85). The increase in noncardiac mortality was primarily attributable to cancer and chronic diseases (P<0.001). Conclusions— This study found a marked temporal switch from predominantly cardiac to predominantly noncardiac causes of death after PCI over 2 decades. The decline in cardiac mortality was independent of changes in baseline clinical characteristics. These findings have implications for patient care and clinical trial design.


Journal of Cardiovascular Translational Research | 2011

Resident Vascular Progenitor Cells—Diverse Origins, Phenotype, and Function

Peter J. Psaltis; Adriana Harbuzariu; Sinny Delacroix; Eric W. Holroyd; Robert D. Simari

The fundamental contributions that blood vessels make toward organogenesis and tissue homeostasis are reflected by the considerable ramifications that loss of vascular wall integrity has on pre- and postnatal health. During both neovascularization and vessel wall remodeling after insult, the dynamic nature of vascular cell growth and replacement vitiates traditional impressions that blood vessels contain predominantly mature, terminally differentiated cell populations. Recent discoveries have verified the presence of diverse stem/progenitor cells for both vascular and non-vascular progeny within the mural layers of the vasculature. During embryogenesis, this encompasses the emergence of definitive hematopoietic stem cells and multipotent mesoangioblasts from the developing dorsal aorta. Ancestral cells have also been identified and isolated from mature, adult blood vessels, showing variable capacity for endothelial, smooth muscle, and mesenchymal differentiation. At present, the characterization of these different vascular wall progenitors remains somewhat rudimentary, but there is evidence for their constitutive residence within organized compartments in the vessel wall, most compellingly in the tunica adventitia. This review overviews the spectrum of resident stem/progenitor cells that have been documented in macro- and micro-vessels during developmental and adult life and considers the implications for a local, vascular wall stem cell niche(s) in the pathogenesis and treatment of cardiovascular and other diseases.


Circulation Research | 2015

Vascular Wall Progenitor Cells in Health and Disease

Peter J. Psaltis; Robert D. Simari

The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.


Cardiovascular diagnosis and therapy | 2014

Epicardial adipose tissue: far more than a fat depot

Andrew H. Talman; Peter J. Psaltis; James D. Cameron; Ian T. Meredith; Sujith Seneviratne; D. Wong

Epicardial adipose tissue (EAT) refers to the fat depot that exists on the surface of the myocardium and is contained entirely beneath the pericardium, thus surrounding and in direct contact with the major coronary arteries and their branches. EAT is a biologically active organ that may play a role in the association between obesity and coronary artery disease (CAD). Given recent advances in non-invasive imaging modalities such a multidetector computed tomography (MDCT), EAT can be accurately measured and quantified. In this review, we focus on the evidence suggesting a role for EAT as a quantifiable risk marker in CAD, as well as describe the role EAT may play in the development and vulnerability of coronary artery plaque.


Circulation | 2012

Identification of a Monocyte-Predisposed Hierarchy of Hematopoietic Progenitor Cells in the Adventitia of Postnatal Murine Aorta

Peter J. Psaltis; Adriana Harbuzariu; Sinny Delacroix; Tyra A. Witt; Eric W. Holroyd; Daniel B. Spoon; Scott J. Hoffman; Shuchong Pan; Laurel S. Kleppe; Cheryl S. Mueske; Rajiv Gulati; Gurpreet S. Sandhu; Robert D. Simari

Background— Hematopoiesis originates from the dorsal aorta during embryogenesis. Although adult blood vessels harbor progenitor populations for endothelial and smooth muscle cells, it is not known if they contain hematopoietic progenitor or stem cells. Here, we hypothesized that the arterial wall is a source of hematopoietic progenitor and stem cells in postnatal life. Methods and Results— Single-cell aortic disaggregates were prepared from adult chow-fed C57BL/6 and apolipoprotein E–null (ApoE−/−) mice. In short- and long-term methylcellulose-based culture, aortic cells generated a broad spectrum of multipotent and lineage-specific hematopoietic colony-forming units, with a preponderance of macrophage colony-forming units. This clonogenicity was higher in lesion-free ApoE−/− mice and localized primarily to stem cell antigen-1–positive cells in the adventitia. Expression of stem cell antigen-1 in the aorta colocalized with canonical hematopoietic stem cell markers, as well as CD45 and mature leukocyte antigens. Adoptive transfer of labeled aortic cells from green fluorescent protein transgenic donors to irradiated C57BL/6 recipients confirmed the content of rare hematopoietic stem cells (1 per 4 000 000 cells) capable of self-renewal and durable, low-level reconstitution of leukocytes. Moreover, the predominance of long-term macrophage precursors was evident by late recovery of green fluorescent protein–positive colonies from recipient bone marrow and spleen that were exclusively macrophage colony-forming units. Although trafficking from bone marrow was shown to replenish some of the hematopoietic potential of the aorta after irradiation, the majority of macrophage precursors appeared to arise locally, suggesting long-term residence in the vessel wall. Conclusions— The postnatal murine aorta contains rare multipotent hematopoietic progenitor/stem cells and is selectively enriched with stem cell antigen-1–positive monocyte/macrophage precursors. These populations may represent novel, local vascular sources of inflammatory cells.


Jacc-cardiovascular Interventions | 2010

Reparative Effects of Allogeneic Mesenchymal Precursor Cells Delivered Transendocardially in Experimental Nonischemic Cardiomyopathy

Peter J. Psaltis; Angelo Carbone; Adam J. Nelson; Dennis H. Lau; Troy Jantzen; Jim Manavis; K. Williams; Silviu Itescu; Prashanthan Sanders; Stan Gronthos; Andrew C.W. Zannettino; Stephen G. Worthley

OBJECTIVES This study set out to evaluate the safety and efficacy of allogeneic bone marrow mesenchymal precursor cells (MPC) delivered by multisegmental, transendocardial implantation in the setting of nonischemic cardiomyopathy (NICM). BACKGROUND Prospectively isolated MPC have shown capacity to mediate cardiovascular repair in myocardial ischemia. However, their efficacy in NICM remains undetermined. METHODS Mesenchymal precursor cells were prepared from ovine bone marrow by immunoselection using the tissue nonspecific alkaline phosphatase, or STRO-3, monoclonal antibody. Fifteen sheep with anthracycline-induced NICM were assigned to catheter-based, transendocardial injections of allogeneic MPC (n = 7) or placebo (n = 8), under electromechanical mapping guidance. Follow-up was for 8 weeks, with end points assessed by cardiac magnetic resonance, echocardiography, and histology. RESULTS Intramyocardial injections were distributed similarly throughout the left ventricle in both groups. Cell transplantation was associated with 1 death late in follow-up, compared with 3 early deaths among placebo animals. Left ventricular end-diastolic size increased in both cohorts, but MPC therapy attenuated end-systolic dilation and stabilized ejection fraction, with a nonsignificant increase (37.3 ± 2.8% before, 39.2 ± 1.4% after) compared with progressive deterioration after placebo (38.8 ± 4.4% before, 32.5 ± 4.9% after, p < 0.05). Histological outcomes of cell therapy included less fibrosis burden than in the placebo group and an increased density of karyokinetic cardiomyocytes and myocardial arterioles (p < 0.05 for each). These changes occurred in the presence of modest cellular engraftment after transplantation. CONCLUSIONS Multisegmental, transendocardial delivery of cell therapy can be achieved effectively in NICM using electromechanical navigation. The pleiotropic properties of immunoselected MPC confer benefit to nonischemic cardiac disease, extending their therapeutic potential beyond the setting of myocardial ischemia.


Circulation Research | 2014

Characterization of a Resident Population of Adventitial Macrophage Progenitor Cells in Postnatal Vasculature

Peter J. Psaltis; Amrutesh S. Puranik; Daniel B. Spoon; Colin D. Chue; Scott J. Hoffman; Tyra A. Witt; Sinny Delacroix; Laurel S. Kleppe; Cheryl S. Mueske; Shuchong Pan; Rajiv Gulati; Robert D. Simari

Rationale: Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. Objective: We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. Methods and Results: Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1+CD45+ cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67+) Lin−c-Kit+CD135−CD115+CX3CR1+Ly6C+CD11b− subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1+CD45+ adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE−/− and LDL-R−/− mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. Conclusions: The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage progenitors in other tissues.


Journal of Cardiovascular Electrophysiology | 2010

Atrial remodeling in an ovine model of anthracycline-induced nonischemic cardiomyopathy: remodeling of the same sort.

Dennis H. Lau; Peter J. Psaltis; Lorraine Mackenzie; Darren J. Kelly; Angelo Carbone; Michael Worthington; Adam J. Nelson; Yuan Zhang; Pawel Kuklik; Christopher X. Wong; James Edwards; David A. Saint; Stephen G. Worthley; Prashanthan Sanders

Atrial Remodeling in Doxorubicin Cardiomyopathy. Introduction: All preclinical studies of atrial remodeling in heart failure (HF) have been confined to a single model of rapid ventricular pacing. To evaluate whether the atrial changes were specific to the model or represented an end result of HF, this study aimed to characterize atrial remodeling in an ovine model of doxorubicin‐induced cardiomyopathy.

Collaboration


Dive into the Peter J. Psaltis's collaboration.

Researchain Logo
Decentralizing Knowledge