Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Punt is active.

Publication


Featured researches published by Peter J. Punt.


Gene | 1990

Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase

Peter J. Punt; Maria A. Dingemanse; Anneke Kuyvenhoven; Ronald D.M. Soede; Peter H. Pouwels; Cees A. M. J. J. van den Hondel

Analysis of the promoter region of the highly expressed Aspergillus nidulans gpdA gene is described. The nucleotide (nt) sequence of a 1.3-kb region upstream from the ATG was determined. Comparison with promoter regions of other Aspergillus and Neurospora genes revealed several regions of similar sequence. Both random and site-specific mutations were introduced into the promoter region of the gpdA gene, and the resulting mutant promoters were fused to the Escherichia coli lacZ gene. The constructed fusions were introduced into A. nidulans and transformants that contained one copy of these fusions at the argB locus were analysed. beta-Galactosidase assays and primer extension experiments were used to identify sequence elements involved in transcription activation and transcription initiation. Two elements, located around 650 and 250 nt upstream from the major transcription start point (tsp), were identified as transcription activation elements. These elements coincide with regions of putative secondary structure (direct or inverted repeats). A third element, a C + T-rich region directly upstream from the major tsp, was shown to be involved in correct initiation of transcription.


Molecular Plant-microbe Interactions | 2002

Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker

Anastasia L. Lagopodi; Arthur F. J. Ram; Gerda E. M. Lamers; Peter J. Punt; Cees A. M. J. J. van den Hondel; Ben J. J. Lugtenberg; Guido V. Bloemberg

The fungus Fusarium oxysporum f. sp. radicis-lycopersici is the causal agent of tomato foot and root rot disease. The green fluorescent protein (GFP) was used to mark this fungus in order to visualize and analyze the colonization and infection processes in vivo. Transformation of F oxysporum f. sp. radicis-lycopersici was very efficient and gfp expression was stable for at least nine subcultures. Microscopic analysis of the transformants revealed homogeneity of the fluorescent signal, which was clearly visible in the hyphae as well as in the chlamydospores and conidia. To our knowledge, this is the first report in which this is shown. The transformation did not affect the pathogenicity. Using confocal laser scanning microscopy, colonization, infection, and disease development on tomato roots were visualized in detail and several new aspects of these processes were observed, such as (i) the complete colonization pattern of the tomato root system; (ii) the very first steps of contact between the fungus and the host, which takes place at the root hair zone by mingling and by the attachment of hyphae to the root hairs; (iii) the preferential colonization sites on the root surface, which are the grooves along the junctions of the epidermal cells; and (iv) the absence of specific infection sites, such as sites of emergence of secondary roots, root tips, or wounded tissue, and the absence of specific infection structures, such as appressoria. The results of this work prove that the use of GFP as a marker for F. oxysporum f. sp. radicis-lycopersici is a convenient, fast, and effective approach for studying plant-fungus interactions.


Gene | 1988

Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene

Margareta Kolar; Peter J. Punt; Cees A. M. J. J. van den Hondel; Helmut Schwab

An industrial Penicillium chrysogenum strain was transformed using two dominant selection markers, namely the bacterial gene for phleomycin resistance (ble) fused to a fungal promoter, and the acetamidase (amdS) gene from Aspergillus nidulans. Transformation frequencies of up to 20 transformants per microgram of DNA were obtained with the ble system. With the amdS marker the frequency was up to 120 transformants. Cotransformation was very efficient when using amdS as a selection marker. The introduction of pAN5-41B, a plasmid carrying the Escherichia coli lacZ gene fused to the strong glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter from A. nidulans, resulted in the formation of blue colonies on XGal plates indicating expression of the lacZ fusion gene in P. chrysogenum. A more detailed analysis of expression levels in several transformants showed that up to 6% of the total amount of soluble protein consists of the beta-galactosidase fusion protein.


Journal of Biotechnology | 2002

Fungal peroxidases: molecular aspects and applications

Ana Conesa; Peter J. Punt; Cees A. M. J. J. van den Hondel

Peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze oxidative reactions. A large number of peroxidases have been identified in fungal species and are being characterized at the molecular level. In this manuscript we review the current knowledge on the molecular aspects of this type of enzymes. We present an overview of the research efforts undertaken in deciphering the structural basis of the catalytic properties of fungal peroxidases and discuss molecular genetics and protein homology aspects of this enzyme class. Finally, we summarize the potential biotechnological applications of these enzymes and evaluate recent advances on their expression in heterologous systems for production purposes.


Applied and Environmental Microbiology | 2002

Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity

Johan Åhman; Tomas Johansson; Maja Olsson; Peter J. Punt; C.A.M.J.J. van den Hondel; Anders Tunlid

ABSTRACT Nematophagous fungi are soil-living fungi that are used as biological control agents of plant and animal parasitic nematodes. Their potential could be improved by genetic engineering, but the lack of information about the molecular background of the infection has precluded this development. In this paper we report that a subtilisin-like extracellular serine protease designated PII is an important pathogenicity factor in the common nematode-trapping fungus Arthrobotrys oligospora. The transcript of PII was not detected during the early stages of infection (adhesion and penetration), but high levels were expressed concurrent with the killing and colonization of the nematode. Disruption of the PII gene by homologous recombination had a limited effect on the pathogenicity of the fungus. However, mutants containing additional copies of the PII gene developed a higher number of infection structures and had an increased speed of capturing and killing nematodes compared to the wild type. The paralyzing activity of PII was verified by demonstrating that a heterologous-produced PII (in Aspergillus niger) had a nematotoxic activity when added to free-living nematodes. The toxic activity of PII was significantly higher than that of other commercially available serine proteases. This is the first report showing that genetic engineering can be used to improve the pathogenicity of a nematode-trapping fungus. In the future it should be possible to express recombinant subtilisins with nematicidal activity in other organisms that are present in the habitat of parasitic nematodes (e.g., host plant).


Journal of Biotechnology | 1991

Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene

Peter J. Punt; Netty D. Zegers; Marco Busscher; Peter H. Pouwels; Cees A. M. J. J. van den Hondel

The expression in Aspergillus is described of genes, coding for intracellular and extracellular proteins controlled by the promoter region of the constitutively and efficiently expressed glyceraldehyde-3-phosphate dehydrogenase gene (gpdA) of Aspergillus nidulans. Both the homologous gpdA and the heterologous Escherichia coli beta-galactosidase (lacZ) and beta-glucuronidase (uidA) genes could be expressed intracellularly at levels as high as 10-25% of total soluble protein. Efficient extracellular production of A. niger glucoamylase could be achieved with a fusion-gene containing the region of the glucoamylase gene coding for the mature protein preceded by a synthetic fungal signal sequence. Extracellular production of a heterologous protein, E. coli beta-glucuronidase, with such a fusion was much less efficient. Only very low levels of beta-glucuronidase were detected in the culture fluid, whereas considerable enzyme activity was detected in the mycelium.


Transgenic Research | 1993

Glucoamylase overexpression inAspergillus niger: Molecular genetic analysis of strains containing multiple copies of theglaA gene

Jan C. Verdoes; Peter J. Punt; Jaap M. Schrickx; Henk W. van Verseveld; Adriaan H. Stouthamer; Cees A. M. J. J. van den Hondel

A strategy, based on the usage of theamdS selection marker and a cosmid vector containing four copies of the glucoamylase gene (glaA), was developed to obtain glucoamylase (GLA)-overproducingA. niger strains. With this strategy, fungal strains carrying up to 200 copies of theglaA gene could be isolated at a relatively high frequency. In each transformant analysed, integration occurred in a single chromosome. A significant increase in the extracellular GLA production was observed in most of the transformants carrying multiple copies of theglaA gene. Further analysis showed that the amount of GLA that is produced was not proportional to the number ofglaA copies in these transformants. However, the level of GLA production clearly correlated with the amount ofglaA mRNA produced in these transformants. From these results it is concluded that GLA production is limited at the level of transcription.


Fungal Genetics and Biology | 2009

The 2008 update of the Aspergillus nidulans genome annotation: A community effort

Jennifer R. Wortman; Jane Mabey Gilsenan; Vinita Joardar; Jennifer Deegan; John Clutterbuck; Mikael Rørdam Andersen; David B. Archer; Mojca Benčina; Gerhard Braus; Pedro M. Coutinho; Hans von Döhren; John H. Doonan; Arnold J. M. Driessen; Pawel Durek; Eduardo A. Espeso; Erzsébet Fekete; Michel Flipphi; Carlos Garcia Estrada; Steven Geysens; Gustavo H. Goldman; Piet W.J. de Groot; Kim Hansen; Steven D. Harris; Thorsten Heinekamp; Kerstin Helmstaedt; Bernard Henrissat; Gerald Hofmann; Tim Homan; Tetsuya Horio; Hiroyuki Horiuchi

The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.


Biotechnology and Bioengineering | 1998

Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture

Julie M. Withers; Richard J. Swift; Marilyn G. Wiebe; Geoffrey D. Robson; Peter J. Punt; Cees A. M. J. J. van den Hondel; Anthony P. J. Trinci

When grown on a medium containing 5 g maltodextrin L-1, Aspergillus niger transformant N402[pAB6-10]B1, which has an additional 20 copies of the glucoamylase (glaA) gene, produced 320 +/- 8 mg (mean +/- S.E.) glucoamylase (GAM) L-1 in batch culture and 373 +/- 9 mg GAM L-1 in maltodextrin-limited chemostat culture at a dilution rate of 0.13 h-1. These values correspond to specific production rates (qp) of 5.6 and 16.0 mg GAM [g biomass]-1 h-1, respectively. In maltodextrin-limited chemostat cultures grown at dilution rates from 0.06 to 0.14 h-1, GAM was produced by B1 in a growth-correlated manner, demonstrating that a continuous flow culture system operated at a high dilution rate is an efficient way of producing this enzyme. In chemostat cultures grown at high dilution rates, GAM production in chemostat cultures was repressed when the limiting nutrient was fructose or xylose, but derepressed when the limiting nutrient was glucose (qp, 12.0), potassium (6.2), ammonium (4.1), phosphate (2.0), magnesium (1.5) or sulphate (0.9). For chemostat cultures grown at a dilution rate of 0.13 h-1, the addition of 5 g mycopeptone L-1 to a glucose-mineral salts medium resulted in a 64% increase in GAM concentration (from 303 +/- 12 to 496 +/- 10 mg GAM L-1) and a 37% increase in specific production rate (from 12.0 +/- 0.4 to 16.4 +/- 1.6 mg GAM [g biomass]-1 h-1). However, although recombinant protein production was stable for at least 948 h (191 generations) when A. niger B1 was grown in chemostat culture on glucose-mineral salts medium, it was stable for less than 136 h (27 generations) on medium containing mycopeptone. The predominant morphological mutants occurring after prolonged chemostat culture were shown to have selective advantage in the chemostat over the parental strain. Compared to their parental strains, two morphological mutants had similar GAM production levels, while a third had a reduced production level. Growth tests and molecular analysis revealed that the number of glaA gene copies in this latter strain (B1-M) was reduced, which could explain its reduced GAM production. Shake-flask cultures carried out with the various morphological mutants revealed that in batch culture all three strains produced considerably less GAM than their parent strains and even less than N402. We show that physiological changes in these morphological mutants contribute to this decreased level of GAM production.


Molecular Microbiology | 2004

Calcium measurement in living filamentous fungi expressing codon-optimized aequorin

Glyn Nelson; O. Kozlova-Zwinderman; A. J. Collis; M. R. Knight; J. R. S. Fincham; C. P. Stanger; A. Renwick; Johanna Hessing; Peter J. Punt; C.A.M.J.J. van den Hondel; Nick D. Read

Calcium signalling is little understood in filamentous fungi largely because easy and routine methods for calcium measurement in living hyphae have previously been unavailable. We have developed the recombinant aequorin method for this purpose. High levels of aequorin expression were obtained in Neurospora crassa, Aspergillus niger and Aspergillus awamori by codon optimization of the aequorin gene. Three external stimuli (mechanical perturbation, hypo‐osmotic shock and high external calcium) were found transiently to increase [Ca2+]c. Each of the calcium signatures associated with these physico‐chemical treatments was unique, suggesting the involvement of three distinct calcium‐mediated signal transduction pathways. The fungal calcium channel blocker KP4 inhibited the [Ca2+]c responses to hypo‐osmotic shock and high external calcium, but not to mechanical perturbation. The divalent cation chelator BAPTA inhibited [Ca2+]c responses to mechanical perturbation and hypo‐osmotic shock. The calcium agonists A23187 and cyclopiazonic acid increased [Ca2+]c levels.

Collaboration


Dive into the Peter J. Punt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan C. Verdoes

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. P. Sinitsyn

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Record

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge