Peter J. Reece
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter J. Reece.
Optics Express | 2008
Maria Dienerowitz; Michael Mazilu; Peter J. Reece; Thomas F. Krauss; Kishan Dholakia
The confinement and controlled movement of metal nanoparticles and nanorods is an emergent area within optical micromanipulation. In this letter we experimentally realise a novel trapping geometry near the plasmon resonance using an annular light field possessing a helical phasefront that confines the nanoparticle to the vortex core (dark) region. We interpret our data with a theoretical framework based upon the Maxwell stress tensor formulation to elucidate the total forces upon nanometric particles near the particle plasmon resonance. Rotation of the particle due to orbital angular momentum transfer is observed. This geometry may have several advantages for advanced manipulation of metal nanoparticles.
Nano Today | 2006
Kishan Dholakia; Peter J. Reece
Light can influence the motion of particles, from the size of a single cell down to a single atom. This has led to the field of optical micromanipulation, where one may guide, trap, and sort objects in this size range. This field has proliferated in the last 30 years and is at the forefront of many studies in the natural sciences.
Applied Physics Letters | 2003
Aurélien Bruyant; Gilles Lerondel; Peter J. Reece; M. Gal
We report on the fabrication of monolithic omnidirectional mirrors based on one-dimensional photonic crystals. The mirrors are comprised of chirped and unchirped multiple layers of microporous silicon. Porosities have been chosen to achieve an optimal low refractive index nL∼1.5 and a high refractive index nH∼2.55. Unchirped structures, centered in the near-infrared, exhibit an omnidirectional reflection band of 100 nm, in agreement with the calculated photonic band structure. Chirped structures exhibit an enlarged omnidirectional stop band (340 nm). Given the possibility of easily tailoring the optical thickness of porous silicon, this material is shown to be very practical for engineering omnidirectional mirrors.
Applied Physics Letters | 2002
Peter J. Reece; G. Lerondel; W. H. Zheng; M. Gal
We have fabricated a number of high-quality porous silicon optical microcavities operating in the near infrared that exhibit cavity resonances with subnanometer linewidths. This was achieved through the low temperature anodic oxidation of highly doped p-type silicon wafers. We have investigated the optical properties of these microcavities using reflectivity and photoluminescence measurements and compared our results with theoretical predictions. From our analysis, we conclude that, for the low temperature fabrication process, the refractive index difference between adjacent layers of the multilayered structure is maximized while optical losses in the cavity are minimized. Furthermore, by considering the origin of optical losses in these microcavities, we demonstrate that fluctuations in the position of the resonance wavelength and optical absorption play an important role in the realization of high-quality interferometric structures.
Optics Express | 2008
Robert F. Marchington; Michael Mazilu; Smitha Kuriakose; V. Garcés-Chávez; Peter J. Reece; Thomas F. Krauss; Min Gu; Kishan Dholakia
Near-field optical micromanipulation permits new possibilities for controlled motion of trapped objects. In this work, we report an original geometry for optically deflecting and sorting micro-objects employing a total internal reflection microscope system. A small beam of laser light is delivered off-axis through a total internal reflection objective which creates an elongated evanescent illumination of light at a glass/water interface. Asymmetrical gradient and scattering forces from this light field are seen to deflect and sort polystyrene microparticles within a fluid flow. The speed of the deflected objects is dependent upon their intrinsic properties. We present a finite element method to calculate the optical forces for the evanescent waves. The numerical simulations are in good qualitative agreement with the experimental observations and elucidate features of the particle trajectory. In the size range of 1 microm to 5 microm in diameter, polystyrene spheres were found to be guided on average 2.9 +/- 0.7 faster than silica spheres. The velocity increased by 3.0 +/- 0.5 microms(-1) per microm increase in diameter for polystyrene spheres and 0.7 +/- 0.2 microms(-1) per microm for silica. We employ this size dependence for performing passive optical sorting within a microfluidic chip and is demonstrated in the accompanying video.
Nature Protocols | 2007
Woei Ming Lee; Peter J. Reece; Robert F. Marchington; Nikolaus Klaus Metzger; Kishan Dholakia
The application of optical traps has come to the fore in the last three decades. They provide a powerful, sterile and noninvasive tool for the manipulation of cells, single biological macromolecules, colloidal microparticles and nanoparticles. An optically trapped microsphere may act as a force transducer that is used to measure forces in the piconewton regime. By setting up a well-calibrated single-beam optical trap within a fluorescence microscope system, one can measure forces and collect fluorescence signals upon biological systems simultaneously. In this protocol, we aim to provide a clear exposition of the methodology of assembling and operating a single-beam gradient force trap (optical tweezers) on an inverted fluorescence microscope. A step-by-step guide is given for alignment and operation, with discussion of common pitfalls.
Applied Physics Letters | 2003
Lan Fu; P. Lever; Hoe Hark Tan; Chennupati Jagadish; Peter J. Reece; M. Gal
In this work, titanium dioxide (TiO2) film was deposited onto the In0.5Ga0.5As/GaAs quantum-dot structure by electron-beam evaporation to investigate its effect on interdiffusion. A large redshifted and broadened spectrum from the dot emission was observed compared with that from the uncapped (but annealed) reference sample, indicating the suppression of thermal interdiffusion due to TiO2 deposition. The structure was also capped with a silicon dioxide (SiO2) single layer or SiO2/TiO2 bilayer with the thickness of SiO2 varied from ∼6 to ∼145 nm. In the former case, an increased amount of impurity-free vacancy disordering (IFVD) was introduced with the increase of SiO2 thickness due to the enhanced Ga outdiffusion into the film. With TiO2 deposited on top, IFVD and thermal interdiffusion were suppressed to different extents with the variation of SiO2 thickness. To explain the suppression of interdiffusion, thermal stress introduced by the large thermal expansion coefficient of TiO2 (when compared with GaAs...
Applied Physics Letters | 2006
Peter J. Reece; V. Garcés-Chávez; Kishan Dholakia
We show that the forces associated with near-field optical micromanipulation can be greatly increased through the use of cavity enhanced evanescent waves. This approach utilizes a resonant dielectric waveguide structure and a prism coupler to produce Fabry-Perot-like cavity modes at a dielectric-fluid interface. Fabricated structures show a ten times enhancement in the optical interaction and optical force for micrometer-sized colloids. In addition, stable accumulation and ordering of large scale arrays of colloids are demonstrated using two counter-propagating cavity enhanced evanescent waves.
Physical Review Letters | 2007
Peter J. Reece; E. M. Wright; Kishan Dholakia
In this Letter we report observations of optically induced self-organization of colloidal arrays in the presence of unpatterned counterpropagating evanescent waves. The colloidal arrays formed along the laser propagation axis are shown to be linked to the breakup of the incident field into optical spatial solitons, the lateral spacing of the arrays being related to modulation instability of the soft condensed matter system.
Nano Letters | 2011
Peter J. Reece; Wen Jun Toe; Fan Wang; Suriati Paiman; Qiang Gao; Hark Hoe Tan; Chennupati Jagadish
We report on the optical trapping characteristics of InP nanowires with dimensions of 30 (±6) nm in diameter and 2-15 μm in length. We describe a method for calibrating the absolute position of individual nanowires relative to the trapping center using synchronous high-speed position sensing and acousto-optic beam switching. Through brownian dynamics we investigate effects of the laser power and polarization on trap stability, as well as length dependence and the effect of simultaneous trapping multiple nanowires.