Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Stambrook is active.

Publication


Featured researches published by Peter J. Stambrook.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Embryonic stem cells and somatic cells differ in mutation frequency and type.

Rachel B. Cervantes; James R. Stringer; Changshun Shao; Jay A. Tischfield; Peter J. Stambrook

Pluripotent embryonic stem (ES) cells have been used to produce genetically modified mice as experimental models of human genetic diseases. Increasingly, human ES cells are being considered for their potential in the treatment of injury and disease. Here we have shown that mutation in murine ES cells, heterozygous at the selectable Aprt locus, differs from that in embryonic somatic cells. The mutation frequency in ES cells is significantly lower than that in mouse embryonic fibroblasts, which is similar to that in adult cells in vivo. The distribution of spontaneous mutagenic events is remarkably different between the two cell types. Although loss of the functional allele is the predominant mutation type in both cases, representing about 80% of all events, mitotic recombination accounted for all loss of heterozygosity events detected in somatic cells. In contrast, mitotic recombination in ES cells appeared to be suppressed and chromosome loss/reduplication, leading to uniparental disomy (UPD), represented more than half of the loss of heterozygosity events. Extended culture of ES cells led to accumulation of cells with adenine phosphoribosyltransferase deficiency and UPD. Because UPD leads to reduction to homozygosity at multiple recessive disease loci, including tumor suppressor loci, in the affected chromosome, the increased risk of tumor formation after stem cell therapy should be viewed with concern.


Oncogene | 1999

Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression

Patrick E. Carroll; Masaru Okuda; Henning F. Horn; Paul W. Biddinger; Peter J. Stambrook; Lyon L. Gleich; Ya Qin Li; Pheruza Tarapore; Kenji Fukasawa

We have previously reported that loss of p53 tumor suppressor protein results in centrosome hyperamplification, which leads to aberrant mitosis and chromosome instability. Since p53 is either deleted or mutated in human cancers at a high frequency, we investigated whether human cancers showed centrosome hyperamplification. Screening of advanced stage breast ductal carcinomas and squamous cell carcinomas of the head and neck (SCCHN) revealed that centrosome hyperamplification is frequent in both tumor types. Moreover, through the analyses of p53 in SCCHN samples by direct sequencing and by loss-of-heterozygosity test, we found that p53 mutations correlated with occurrence of centrosome hyperamplification. However, in some cases, we observed centrosome hyperamplification in tumors that retained wild-type p53. These tumors contained high levels of Mdm2. Since Mdm2 can inactivate p53 through physical association, we investigated whether Mdm2 overexpression induced centrosome hyperamplification. We found that Mdm2 overexpression, like loss of p53, induced centrosome hyperamplification and chromosome instability in cultured cells.


Oncogene | 2000

The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway

Harold I. Saavedra; Jeffrey A. Knauf; Jill M. Shirokawa; Jianwei Wang; Bin Ouyang; Rosella Elisei; Peter J. Stambrook; James A. Fagin

Activating mutations of RAS are thought to be early events in the evolution of thyroid follicular neoplasms. We used a doxycycline-inducible expression system to explore the acute effects of H-RASV12 on genomic stability in thyroid PCCL3 cells. At 2–3 days (first or second cell cycle) there was a significant increase in the frequency of micronucleation. Treatment of cells with YVAD-CHO inhibited RAS-induced apoptosis, but had no effect on micronucleation. The effects of H-RASV12 were mediated by activation of MAPK, as treatment with PD98059 at concentrations verified to selectively inhibit MEK1 reduced the frequency of prevalence of cells with micronuclei. In addition, doxycycline-inducible expression of a constitutively active MEK1, but not of a mutant RAC1, mimicked the effects of H-RASV12. The effects of H-RASV12 on genome destabilization were apparent even though the sequence of p53 in PCCL3 cells was confirmed to be wild-type. Acute activation of H-RASV12 evoked a proportional increase in both CREST negative and CREST positive micronuclei, indicating that both clastogenic and aneugenic effects were involved. H-RASV12 and activated MEK1 also induced centrosome amplification, and chromosome misalignment. Evidence that acute expression of constitutively activated RAS destabilizes the genome of PCCL3 cells is consistent with a mode of tumor initiation in which this oncogene promotes phenotypic progression by predisposing to large scale genomic abnormalities.


Oncogene | 2002

Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways.

El Mustapha Bahassi; Christopher W. Conn; David L. Myer; Robert F. Hennigan; Clare H McGowan; Yolanda Sanchez; Peter J. Stambrook

The Polo-like kinases (Plks) are a conserved family of kinases that contribute to cell cycle regulation, particularly in G2 and mitosis. In mammals, there are at least three members of the Plk family. Here we show that Plk3 is a stress response protein that becomes phosphorylated following DNA damage or mitotic spindle disruption. Phosphorylation enhances its kinase activity and is dependent upon ataxia telangiectasia-mutated (ATM) in the former case but not the latter. Plk3 associates with complexes of multiple sizes ranging from 150 to greater then 600 kDa. In its unphosphorylated form it elutes from a sizing column at about 400 kDa whereas it associates with complexes of 150 and 600 kDa when phosphorylated. Among the proteins with which it physically associates and utilizes, as substrates are Chk2 and P53. It phosphorylates Chk2 on a residue different from threonine 68 (Thr68), the principal target for ATM. While ATM is necessary for phosphorylation and activation of Chk2 in vivo, Plk3 seems to contribute to its full activation. In its phosphorylated form it also coelutes and forms a complex with unpolymerized tubulin. In aggregate, the data argue that Plk3 is a multifunctional protein that associates with multiple complexes and that contributes to response to stress incurred by DNA damage and mitotic spindle disruption, albeit via different pathways.


Experimental Cell Research | 2008

DNA repair in murine embryonic stem cells and differentiated cells

Elisia D. Tichy; Peter J. Stambrook

Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.


Journal of Biological Chemistry | 1997

Human Prk is a conserved protein serine/threonine kinase involved in regulating M phase functions.

Bin Ouyang; Huiqi Pan; Luo Lu; Jian Li; Peter J. Stambrook; Bo Li; Wei Dai

Human prk encodes a novel protein serine/threonine kinase capable of strongly phosphorylating casein but not histone H1 in vitro. prk expression is tightly regulated at various levels during different stages of the cell cycle in lung fibroblasts. The Prk kinase activity is relatively low during mitosis, G1, and G1/S, and peaks during late S and G2 stages of the cell cycle. Recombinant human Prk expressed through the baculoviral vector system is capable of phosphorylating Cdc25C, a positive regulator for the G2/M transition. Human prk shares significant sequence homology with Saccharomyces cerevisiae CDC5 and Drosophila melanogaster polo, both of which are essential for mitosis and meiosis. Full-length prk transcripts greatly potentiate progesterone-induced meiotic maturation of Xenopus laevisoocytes. On the other hand, antisense prk transcripts significantly delay and reduce the rate of oocyte maturation. When expressed in a CDC5 mutant strain of S. cerevisiae, human Prk, but not a deletional mutant protein, fully rescues the temperature-sensitive phenotype of the budding yeast. Taken together,prk may represent a new protein kinase, playing an important role in regulating the onset and/or progression of mitosis in mammalian cells.


Oncogene | 2008

The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage

El Mustapha Bahassi; Jerald L. Ovesen; Al Riesenberg; Wz Bernstein; Paul Hasty; Peter J. Stambrook

The cellular response to the introduction of double strand DNA breaks involves complexes of protein interactions that govern cell cycle checkpoint arrest and repair of the DNA lesions. The checkpoint kinases Chk1 and Chk2 phosphorylate the carboxy-terminal domain of hBRCA2, a protein involved in recombination-mediated DNA repair (HRR) and replication fork maintenance. Cells deficient in hBRCA2 are hypersensitive to DNA damaging agents. Phosphorylation of the residue in hBRCA2 targeted by the Chk1 and Chk2 kinases regulates its interaction with Rad51. Furthermore, the cell line lex1/lex2, which lacks the carboxy-terminal domain containing the phosphorylated residue, does not support localization of Rad51 to nuclear foci after exposure to UV or treatment with ionizing radiation (IR). The data show that either phosphorylation of Rad51 by Chk1 or phosphorylation of the carboxy-terminal domain of hBRCA2 by Chk1 or Chk2 plays a critical role in the binding of Rad51 to hBRCA2 and the subsequent recruitment of Rad51 to sites of DNA damage. While depletion of Chk1 from cells leads to loss of Rad51 localization to nuclear foci in response to replication arrest, cells lacking Chk2 also show a defect in Rad51 localization, but only in presence of double strand DNA breaks, indicating that each of these kinases may contribute somewhat differently to the formation of Rad51 nucleoprotein filaments depending on the type of DNA damage incurred by the cells.


Stem Cells and Development | 2010

Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

Elisia D. Tichy; Resmi Pillai; Li Deng; Li Liang; Jay A. Tischfield; Sandy Schwemberger; George F. Babcock; Peter J. Stambrook

Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.


Transgenic Research | 1994

Reporter genes in transgenic mice

Cunqi Cui; Maqsood A. Wani; David C. Wight; John J. Kopchick; Peter J. Stambrook

Althoughin vivo models utilizing endogenous reporter genes have been exploited for many years, the use of reporter transgenes to dissect biological issues in transgenic animals has been a relatively recent development. These transgenes are often, but not always, of prokaryotic origin and encode products not normally associated with eukaryotic cells and tissues. Some encode enzymes whose activities are detected in cell and tissue homogenates, whereas others encode products that can be detectedin situ at the single cell level. Reporter genes have been used to identify regulatory elements that are important for tissue-specific gene expression or for development; they have been used to producein vivo models of cancer; they have been employed for the study ofin vivo mutagenesis; and they have been used as a tool in lineage analysis and for marking cells in transplanation experiments. The most commonly usedin situ reporter gene islacZ, which encodes a bacterial β-galactosidase, a sensitive histochemical marker. Although it has been used with striking success in cultured cells and in transgenic mouse embryos, its postnatalin vivo expression has been unreliable and disappointing. Nevertheless, the ability to express reporter genes in transgenic mice has been an invaluable resource, providing insights intoin vivo biological mechanisms. The development of newin vivo models, such as those in which expression of transgenes can be activated or repressed, should produce transgenic animal systems that extend our capacity to address heretofore unresolved biological questions.


Journal of Biological Chemistry | 1999

MAPK Mediates RAS-induced Chromosome Instability

Harold I. Saavedra; Kenji Fukasawa; Christopher W. Conn; Peter J. Stambrook

The generation of micronuclei is a reflection of DNA damage, defective mitosis, and loss of genetic material. The involvement of the MAPK pathway in mediating v-ras-induced micronuclei in NIH 3T3 cells was examined by inhibiting MAPK activation. Conversely, the MAPK pathway was constitutively activated by infecting cells with a v-mos retrovirus. Micronucleus formation was inhibited by the MAPK kinase inhibitors PD98059 and U0126, but not by wortmannin, an inhibitor of the Ras/phosphatidylinositol 3-kinase pathway. Transduction of cells with v-mos resulted in an increase in micronucleus formation, also consistent with the involvement of the MAPK pathway. Staining with the anti-centromeric CREST antibody revealed that instability induced by constitutive activation of MAPK is due predominantly to aberrant mitotic segregation, since most of the micronuclei were CREST-positive, reflective of lost chromosomes. A significant fraction of the micronuclei were CREST-negative, reflective of lost acentric chromosome fragments. Some of the instability observed was due to mitotic events, consistent with the increased formation of bi-nucleated cells, which result from perturbations of the mitotic spindle and failure to undergo cytokinesis. This chromosome instability, therefore, is a consequence of mitotic aberrations, mediated by the MAPK pathway, including centrosome amplification and formation of mitotic chromosome bridges.

Collaboration


Dive into the Peter J. Stambrook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyon L. Gleich

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Elisia D. Tichy

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge