Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Uhlhaas is active.

Publication


Featured researches published by Peter J. Uhlhaas.


Neuron | 2006

Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology

Peter J. Uhlhaas; Wolf Singer

Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, novel methods of time series analysis have been developed for the examination of task- and performance-related oscillatory activity and its synchronization. Studies employing these advanced techniques revealed that synchronization of oscillatory responses in the beta- and gamma-band is involved in a variety of cognitive functions, such as perceptual grouping, attention-dependent stimulus selection, routing of signals across distributed cortical networks, sensory-motor integration, working memory, and perceptual awareness. Here, we review evidence that certain brain disorders, such as schizophrenia, epilepsy, autism, Alzheimers disease, and Parkinsons are associated with abnormal neural synchronization. The data suggest close correlations between abnormalities in neuronal synchronization and cognitive dysfunctions, emphasizing the importance of temporal coordination. Thus, focused search for abnormalities in temporal patterning may be of considerable clinical relevance.


Nature Reviews Neuroscience | 2010

Abnormal neural oscillations and synchrony in schizophrenia

Peter J. Uhlhaas; Wolf Singer

Converging evidence from electrophysiological, physiological and anatomical studies suggests that abnormalities in the synchronized oscillatory activity of neurons may have a central role in the pathophysiology of schizophrenia. Neural oscillations are a fundamental mechanism for the establishment of precise temporal relationships between neuronal responses that are in turn relevant for memory, perception and consciousness. In patients with schizophrenia, the synchronization of beta- and gamma-band activity is abnormal, suggesting a crucial role for dysfunctional oscillations in the generation of the cognitive deficits and other symptoms of the disorder. Dysfunctional oscillations may arise owing to anomalies in the brains rhythm-generating networks of GABA (γ-aminobutyric acid) interneurons and in cortico-cortical connections.


Frontiers in Integrative Neuroscience | 2009

Neural synchrony in cortical networks: history, concept and current status

Peter J. Uhlhaas; Gordon Pipa; Bruss Lima; Lucia Melloni; Sergio Neuenschwander; Danko Nikolić; Wolf Singer

Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.


Schizophrenia Bulletin | 2008

The Role of Oscillations and Synchrony in Cortical Networks and Their Putative Relevance for the Pathophysiology of Schizophrenia

Peter J. Uhlhaas; Corinna Haenschel; Danko Nikolić; Wolf Singer

Neural oscillations and their synchronization may represent a versatile signal to realize flexible communication within and between cortical areas. By now, there is extensive evidence to suggest that cognitive functions depending on coordination of distributed neural responses, such as perceptual grouping, attention-dependent stimulus selection, subsystem integration, working memory, and consciousness, are associated with synchronized oscillatory activity in the theta-, alpha-, beta-, and gamma-band, suggesting a functional mechanism of neural oscillations in cortical networks. In addition to their role in normal brain functioning, there is increasing evidence that altered oscillatory activity may be associated with certain neuropsychiatric disorders, such as schizophrenia, that involve dysfunctional cognition and behavior. In the following article, we aim to summarize the evidence on the role of neural oscillations during normal brain functioning and their relationship to cognitive processes. In the second part, we review research that has examined oscillatory activity during cognitive and behavioral tasks in schizophrenia. These studies suggest that schizophrenia involves abnormal oscillations and synchrony that are related to cognitive dysfunctions and some of the symptoms of the disorder. Perspectives for future research will be discussed in relationship to methodological issues, the utility of neural oscillations as a biomarker, and the neurodevelopmental hypothesis of schizophrenia.


The Journal of Neuroscience | 2006

Dysfunctional Long-Range Coordination of Neural Activity during Gestalt Perception in Schizophrenia

Peter J. Uhlhaas; David Edmund Johannes Linden; Wolf Singer; Corinna Haenschel; Michael Lindner; Konrad Maurer; Eugenio Rodriguez

Recent theoretical and empirical research on schizophrenia converges on the notion that core aspects of the pathophysiology of the disorder may arise from a dysfunction in the coordination of distributed neural activity. Synchronization of neural responses in the β-band (15–30 Hz) and γ-band range (30–80 Hz) has been implicated as a possible neural substrate for dysfunctional coordination in schizophrenia. To test this hypothesis, we examined the electroencephalography (EEG) activity in 19 patients with a Diagnostic and Statistical Manual of Mental Disorder, edition IV criteria, diagnosis of schizophrenia and 19 healthy control subjects during a Gestalt perception task. EEG data were analyzed for phase synchrony and induced spectral power as an index of neural synchronization. Schizophrenia patients were impaired significantly in the detection of images that required the grouping of stimulus elements into coherent object representations. This deficit was accompanied by longer reaction times in schizophrenia patients. Deficits in Gestalt perception in schizophrenia patients were associated with reduced phase synchrony in the β-band (20–30 Hz), whereas induced spectral power in the γ-band (40–70 Hz) was mainly intact. Our findings suggest that schizophrenia patients are impaired in the long-range synchronization of neural responses, which may reflect a core deficit in the coordination of neural activity and underlie the specific cognitive dysfunctions associated with the disorder.


Trends in Cognitive Sciences | 2010

Neural synchrony and the development of cortical networks

Peter J. Uhlhaas; Frédéric Roux; Eugenio Rodriguez; Anna Rotarska-Jagiela; Wolf Singer

Recent data indicate that the synchronisation of oscillatory activity is relevant for the development of cortical circuits as demonstrated by the involvement of neural synchrony in synaptic plasticity and changes in the frequency and synchronisation of neural oscillations during development. Analyses of resting-state and task-related neural synchrony indicate that gamma-oscillations emerge during early childhood and precise temporal coordination through neural synchrony continues to mature until early adulthood. The late maturation of neural synchrony is compatible with changes in the myelination of cortico-cortical connections and with late development of GABAergic neurotransmission. These findings highlight the role of neural synchrony for normal brain development as well as its potential importance for understanding neurodevelopmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia.


Neuron | 2012

Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large-Scale Networks

Peter J. Uhlhaas; Wolf Singer

In recent years, numerous studies have tested the relevance of neural oscillations in neuropsychiatric conditions, highlighting the potential role of changes in temporal coordination as a pathophysiological mechanism in brain disorders. In the current review, we provide an update on this hypothesis because of the growing evidence that temporal coordination is essential for the context and goal-dependent, dynamic formation of large-scale cortical networks. We shall focus on issues that we consider particularly promising for a translational research program aimed at furthering our understanding of the origins of neuropsychiatric disorders and the development of effective therapies. We will focus on schizophrenia and autism spectrum disorders (ASDs) to highlight important issues and challenges for the implementation of such an approach. Specifically, we will argue that deficits in temporal coordination lead to a disruption of functional large-scale networks, which in turn can account for several specific dysfunctions associated with these disorders.


Trends in Cognitive Sciences | 2014

Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information?

Frédéric Roux; Peter J. Uhlhaas

Neural oscillations at different frequencies have recently been related to a wide range of basic and higher cognitive processes. One possible role of oscillatory activity is to assure the maintenance of information in working memory (WM). Here we review the possibility that rhythmic activity at theta, alpha, and gamma frequencies serve distinct functional roles during WM maintenance. Specifically, we propose that gamma-band oscillations are generically involved in the maintenance of WM information. By contrast, alpha-band activity reflects the active inhibition of task-irrelevant information, whereas theta-band oscillations underlie the organization of sequentially ordered WM items. Finally, we address the role of cross-frequency coupling (CFC) in enabling alpha-gamma and theta-gamma codes for distinct WM information.


Schizophrenia Research | 2010

Resting-state functional network correlates of psychotic symptoms in schizophrenia

Anna Rotarska-Jagiela; Vincent van de Ven; Viola Oertel-Knöchel; Peter J. Uhlhaas; Kai Vogeley; David Edmund Johannes Linden

Schizophrenia has been associated with aberrant intrinsic functional organization of the brain but the relationship of such deficits to psychopathology is unclear. In this study, we investigated associations between resting-state networks and individual psychopathology in sixteen patients with paranoid schizophrenia and sixteen matched healthy control participants. We estimated whole-brain functional connectivity of multiple networks using a combination of spatial independent component analysis and multiple regression analysis. Five networks (default-mode, left and right fronto-parietal, left fronto-temporal and auditory networks) were selected for analysis based on their involvement in neuropsychological models of psychosis. Between-group comparisons and correlations to psychopathology ratings were performed on both spatial (connectivity distributions) and temporal features (power-spectral densities of temporal frequencies below 0.06 Hz). Schizophrenia patients showed aberrant functional connectivity in the default-mode network, which correlated with severity of hallucinations and delusions, and decreased hemispheric separation of fronto-parietal activity, which correlated with disorganization symptoms. Furthermore, the severity of positive symptoms correlated with functional connectivity of fronto-temporal and auditory networks. Finally, default-mode and auditory networks showed increased spectral power of low frequency oscillations, which correlated with positive symptom severity. These results are in line with findings from studies that investigated the neural correlates of positive symptoms and suggest that psychopathology is associated with aberrant intrinsic organization of functional brain networks in schizophrenia.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The development of neural synchrony reflects late maturation and restructuring of functional networks in humans

Peter J. Uhlhaas; Frédéric Roux; Wolf Singer; Corinna Haenschel; Ruxandra Sireteanu; Eugenio Rodriguez

Brain development is characterized by maturational processes that span the period from childhood through adolescence to adulthood, but little is known whether and how developmental processes differ during these phases. We analyzed the development of functional networks by measuring neural synchrony in EEG recordings during a Gestalt perception task in 68 participants ranging in age from 6 to 21 years. Until early adolescence, developmental improvements in cognitive performance were accompanied by increases in neural synchrony. This developmental phase was followed by an unexpected decrease in neural synchrony that occurred during late adolescence and was associated with reduced performance. After this period of destabilization, we observed a reorganization of synchronization patterns that was accompanied by pronounced increases in gamma-band power and in theta and beta phase synchrony. These findings provide evidence for the relationship between neural synchrony and late brain development that has important implications for the understanding of adolescence as a critical period of brain maturation.

Collaboration


Dive into the Peter J. Uhlhaas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Wibral

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge