Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Wagner is active.

Publication


Featured researches published by Peter J. Wagner.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Effects of sampling standardization on estimates of Phanerozoic marine diversification.

John Alroy; Charles R. Marshall; Richard K. Bambach; K. Bezusko; Michael Foote; Franz T. Fürsich; Thor A. Hansen; Steven M. Holland; Linda C. Ivany; David Jablonski; David K. Jacobs; D. C. Jones; Matthew A. Kosnik; Scott Lidgard; S. Low; Arnold I. Miller; Philip M. Novack-Gottshall; T. D. Olszewski; Mark E. Patzkowsky; David M. Raup; Kaustuv Roy; J. John Sepkoski; M. G. Sommers; Peter J. Wagner; A. Webber

Global diversity curves reflect more than just the number of taxa that have existed through time: they also mirror variation in the nature of the fossil record and the way the record is reported. These sampling effects are best quantified by assembling and analyzing large numbers of locality-specific biotic inventories. Here, we introduce a new database of this kind for the Phanerozoic fossil record of marine invertebrates. We apply four substantially distinct analytical methods that estimate taxonomic diversity by quantifying and correcting for variation through time in the number and nature of inventories. Variation introduced by the use of two dramatically different counting protocols also is explored. We present sampling-standardized diversity estimates for two long intervals that sum to 300 Myr (Middle Ordovician-Carboniferous; Late Jurassic-Paleogene). Our new curves differ considerably from traditional, synoptic curves. For example, some of them imply unexpectedly low late Cretaceous and early Tertiary diversity levels. However, such factors as the current emphasis in the database on North America and Europe still obscure our view of the global history of marine biodiversity. These limitations will be addressed as the database and methods are refined.


Systematic Biology | 2000

Integrating Ambiguously Aligned Regions of DNA Sequences in Phylogenetic Analyses Without Violating Positional Homology

Francois ̧ Lutzoni; Peter J. Wagner; Valérie Reeb; Stefan Zoller

Phylogenetic analyses of non-protein-coding nucleotide sequences such as ribosomal RNA genes, internal transcribed spacers, and introns are often impeded by regions of the alignments that are ambiguously aligned. These regions are characterized by the presence of gaps and their uncertain positions, no matter which optimization criteria are used. This problem is particularly acute in large-scale phylogenetic studies and when aligning highly diverged sequences. Accommodating these regions, where positional homology is likely to be violated, in phylogenetic analyses has been dealt with very differently by molecular systematists and evolutionists, ranging from the total exclusion of these regions to the inclusion of every position regardless of ambiguity in the alignment. We present a new method that allows the inclusion of ambiguously aligned regions without violating homology. In this three-step procedure, first homologous regions of the alignment containing ambiguously aligned sequences are delimited. Second, each ambiguously aligned region is unequivocally coded as a new character, replacing its respective ambiguous region. Third, each of the coded characters is subjected to a specific step matrix to account for the differential number of changes (summing substitutions and indels) needed to transform one sequence to another. The optimal number of steps included in the step matrix is the one derived from the pairwise alignment with the greatest similarity and the least number of steps. In addition to potentially enhancing phylogenetic resolution and support, by integrating previously nonaccessible characters without violating positional homology, this new approach can improve branch length estimations when using parsimony.


Science | 2006

Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems

Peter J. Wagner; Matthew A. Kosnik; Scott Lidgard

Likelihood analyses of 1176 fossil assemblages of marine organisms from Phanerozoic (i.e., Cambrian to Recent) assemblages indicate a shift in typical relative-abundance distributions after the Paleozoic. Ecological theory associated with these abundance distributions implies that complex ecosystems are far more common among Meso-Cenozoic assemblages than among the Paleozoic assemblages that preceded them. This transition coincides not with any major change in the way fossils are preserved or collected but with a shift from communities dominated by sessile epifaunal suspension feeders to communities with elevated diversities of mobile and infaunal taxa. This suggests that the end-Permian extinction permanently altered prevailing marine ecosystem structure and precipitated high levels of ecological complexity and alpha diversity in the Meso-Cenozoic.


Evolution | 2000

EXHAUSTION OF MORPHOLOGIC CHARACTER STATES AMONG FOSSIL TAXA

Peter J. Wagner

Frequencies of new character state derivations are analyzed for 56 fossil taxa. The hypothesis that new character states are added continuously throughout clade history can be rejected for 48 of these clades. Two alternative explanations are considered: finite states and ordered states. The former hypothesizes a limited number of states available to each character and is tested using rarefaction equations. The latter hypothesizes that there are limited possible descendant morphologies for any state, even if the character has infinite potential states. This is tested using power functions. The finite states hypothesis explains states: steps relationships significantly better than does the ordered states hypothesis in 14 cases; the converse is true for 14 other cases. Under either hypothesis, trilobite clades show appreciably more homoplasty after the same numbers of steps than do molluscs, echinoderms, or vertebrates. The prevalence of the exhaustion pattern among different taxonomic groups implies that worker biases are not to blame and instead implicates biological explanations such as intrinsic constraints or persistent selective trends. Regardless of the source of increased homoplasy, clades appear to exhaust their available character spaces. Nearly all examined taxa show significant increases in proportions of incompatible character pairs (i.e., those necessarily implying homoplasy) as progressively younger taxa are added to character matrices. Thus, a deterioration of hierarchical structure accompanies character state exhaustion. Exhaustion has several implications: (1) the basic premise of cladistic analyses (i.e., that maximum congruence reflects homology rather than homoplasy) becomes increasingly less sound as clades age; (2) sampling high proportions of taxa probably is needed for congruence to discern homoplasy from homology; (3) stratigraphic data might be necessary to discern congruent homoplasy from congruent homology; and (4) in many cases, character states appear to have evolved in ordered patterns.


Paleobiology | 1995

Stratigraphic tests of cladistic hypotheses

Peter J. Wagner

Cladograms predict the order in which fossil taxa appeared and, thus, make predictions about general patterns in the stratigraphic record. Inconsistencies between cladistic predictions and the observed stratigraphic record reflect either inadequate sampling of a clades species, incomplete estimates of stratigraphic ranges, or homoplasy producing an incorrect phylogenetic hypothesis. A method presented in this paper attempts to separate the effects of homoplasy from the effects of inadequate sampling. Sampling densities of individual species are used to calculate confidence intervals on their stratigraphic ranges. The method uses these confidence intervals to test the order of branching predicted by a cladogram. The Lophospiridae (“Archaeogastropoda”) of the Ordovician provide a useful test group because the clade has a good fossil record and it produced species over a long time. Confidence intervals reject several cladistic hypotheses that postulate improbable “ghost lineages.” Other hypotheses are acceptable only with explicit ancestor-descendant relationships. The accepted cladogram is the shortest one that stratigraphic data cannot reject. The results caution against evaluating phylogenetic hypotheses of fossil taxa without considering both stratigraphic data and the possible presence of ancestral species, as both factors can affect interpretations of a clades evolutionary dynamics and its patterns of morphologic evolution.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change

Marcello Ruta; Peter J. Wagner; Michael I. Coates

Although numerous studies have examined morphological diversification during major radiations of marine taxa, much less attention has been paid to terrestrial radiations. Here, we examine rates of character change over phylogeny and over time for Palaeozoic limbed tetrapods. Palaeozoic tetrapods show significant decreases in rates of character change whether the rate is measured per sampled cladistic branch or per million years along phylogeny. Given changes per branch, rates decrease significantly from the Devonian through the Pennsylvanian, but not from the Pennsylvanian through the Permian. Given changes per million years, rates decrease significantly over each boundary, although the decrease is least significant over the Pennsylvanian–Permian boundary. Decreasing rates per million years through the Permian might be an artefact of the method being able to ascribe longer durations to Permian branches than to Carboniferous ones; however, it is difficult to ascribe the general pattern of decreasing rates of change over time to sampling biases or methodological biases. Thus, the results implicate biological explanations for this pattern.


Evolution | 1996

CONTRASTING THE UNDERLYING PATTERNS OF ACTIVE TRENDS IN MORPHOLOGIC EVOLUTION

Peter J. Wagner

Gastropod evolution during the early Paleozoic featured active trends (i.e., differential replacement of morphologies) for at least three shell characters. Selective sorting, either of individual organisms or of whole species, is an obvious mechanism for such active trends. Sorting of individuals should result in a disproportionate number of ancestor to descendant transitions being in the same direction as the trend, whereas sorting of species should result in species with particular morphologies producing more daughter species. Sorting of species can occur over long periods of time or it can be concentrated over a particular interval, such as an extinction event. Constraints on morphologic evolution also can drive trends, especially in cases where it is easier to produce a particular morphology than it is to change it. Finally, active trends can be artifacts of unrelated differential diversification within a clade (i.e., species hitchhiking), which might result from sorting of species based on phylogenetically associated characters or simply by chance. Unlike other active trends, trends attributable to species hitchhiking do not support hypotheses about selection or evolutionary constraints.


Systematic Biology | 2000

The Quality of the Fossil Record and the Accuracy of Phylogenetic Inferences about Sampling and Diversity

Peter J. Wagner

Because phylogenies can be estimated without stratigraphic data and because estimated phylogenies also infer gaps in sampling, some workers have used phylogeny estimates as templates for evaluating sampling from the fossil record and for correcting historical diversity patterns. However, it is not known how sampling intensity (the probability of sampling taxa per unit time) and completeness (the proportion of taxa sampled) affect the accuracy of phylogenetic inferences, nor how phylogenetically inferred estimates of sampling and diversity respond to inaccurate estimates of phylogeny. Both issues are addressed with a series of simulations using simple models of character evolution, varying speciation patterns, and various rates of speciation, extinction, character change, and preservation. Parsimony estimates of simulated phylogenies become less accurate as sampling decreases, and inaccurate trees chronically underestimate sampling. Biotic factors such as rates of morphologic change and extinction both affect the accuracy of phylogenetic estimates and thus affect estimated gaps in sampling, indicating that differences in implied sampling need not reflect actual differences in sampling. Errors in inferred diversity are concentrated early in the history of a clade. This, coupled with failure to account for true extinction times (i.e., the Signor-Lipps effect), inflates relative diversity levels early in clade histories. Because factors other than differences in sampling predict differences in the numbers of gaps implied by phylogeny estimates, inferred phylogenies can be misleading templates for evaluating sampling or historical diversity patterns.


Science | 2009

Fossil plant relative abundances indicate sudden loss of late triassic biodiversity in East Greenland.

Jennifer C. McElwain; Peter J. Wagner; Stephen P. Hesselbo

Extinction Distinction The Triassic-Jurassic extinction approximately 200 million years ago is one of the five major extinctions in Earths history. It has been primarily recognized through the loss of marine species, as well as the subsequent emergence of dinosaurs, but its pace, both on land and in sea, has been unclear. McElwain et al. (p. 1554) now provide evidence from the plant fossil record from rocks in East Greenland. The total number of taxa and the number of common taxa decreased across the extinction boundary. The decrease was fairly abrupt and seemed to coincide with a period with increased atmospheric CO2 levels. Plant fossils from East Greenland record an abrupt decrease in abundance as CO2 levels increased. The pace of Late Triassic (LT) biodiversity loss is uncertain, yet it could help to decipher causal mechanisms of mass extinction. We investigated relative abundance distributions (RADs) of six LT plant assemblages from the Kap Stewart Group, East Greenland, to determine the pace of collapse of LT primary productivity. RADs displayed not simply decreases in the number of taxa, but decreases in the number of common taxa. Likelihood tests rejected a hypothesis of continuously declining diversity. Instead, the RAD shift occurred over the upper two-to-four fossil plant assemblages and most likely over the last three (final 13 meters), coinciding with increased atmospheric carbon dioxide concentration and global warming. Thus, although the LT event did not induce mass extinction of plant families, it accompanied major and abrupt change in their ecology and diversity.


Paleobiology | 1998

A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa

Peter J. Wagner

Estimates of phylogenetic relationships among fossil taxa implicitly provide hypotheses about the quality of the fossil record. Phylogenetic inferences also provide hypotheses about char- acter evolution. The likelihood of any hypothesis that makes predictions about two data sets is simply the likelihood of the hypothesis given the first data set times the likelihood of the same hypothesis given the second data set. In this case, data set 1 represents stratigraphy and data set 2 represents morphology. Statistical methods exist for determining the likelihood of hypothesized levels of sampling. The likelihood of a hypothesized amount of character change yielding a par- ticular most-parsimonious solution (i.e, L(hypothesized length I parsimony length) can be evalu- ated with simulations. A reanalysis of hyaenid phylogeny based on published character and strati- graphic data is presented here, using the maximum likelihood method. Two trees are found, de- pending on assumptions about ambiguous species, which are 11 and 10 steps longer than the most parsimonious tree (61 or 60 vs. 50 steps). However, the trees invoke far less stratigraphic debt (9 or 12 units vs. 47 units as measured in Mammal Zones). An important feature of the results is that the most likely tree length given hyaenid character data is estimated to be 56 to 62 steps (depending on the model of character evolution) rather than 50 steps. The likelihood tree suggests stronger trends toward bone-crushing specializations than does the parsimony tree and further suggests that high levels of homoplasy caused parsimony to underestimate the true extent of those trends. Simulations based on the character data and fossil record of hyaenids suggest that the maximum likelihood method is better able to estimate correct trees than is parsimony and somewhat better able to do so than previously proposed phylogenetic methods incorporating stratigraphy.

Collaboration


Dive into the Peter J. Wagner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Lidgard

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franz T. Fürsich

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Kiessling

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaustuv Roy

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge