Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter K. Weber is active.

Publication


Featured researches published by Peter K. Weber.


Science | 2009

N-Doping of Graphene Through Electrothermal Reactions with Ammonia

Xinran Wang; Xiaolin Li; Li Zhang; Youngki Yoon; Peter K. Weber; Hailiang Wang; Jing Guo; Hongjie Dai

Negatively Doped Graphene Nanoribbons The potential applications in electronic devices of graphene (single atom, thick layers of graphite) would be even greater if it can be accessed in both p- and n-doped forms. Graphene nanoribbons (long strips only tens of nanometers in width) are readily p-doped by adsorbates from the ambient atmosphere. Wang et al. (p. 768) show that when graphene nano-ribbons are electrically heated in an ammonia atmosphere, nitrogen is incorporated mainly at the edges of the ribbon and creates an n-type material. Field-effect transistors that operate at room temperature can be made from this material. The edges of graphene nanoribbons incorporate nitrogen atoms after heating in an atmosphere of ammonia. Graphene is readily p-doped by adsorbates, but for device applications, it would be useful to access the n-doped material. Individual graphene nanoribbons were covalently functionalized by nitrogen species through high-power electrical joule heating in ammonia gas, leading to n-type electronic doping consistent with theory. The formation of the carbon-nitrogen bond should occur mostly at the edges of graphene where chemical reactivity is high. X-ray photoelectron spectroscopy and nanometer-scale secondary ion mass spectroscopy confirm the carbon-nitrogen species in graphene thermally annealed in ammonia. We fabricated an n-type graphene field-effect transistor that operates at room temperature.


Science | 2011

A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus

Felisa Wolfe-Simon; Jodi Switzer Blum; Thomas R. Kulp; Gwyneth W. Gordon; Shelley E. Hoeft; Jennifer Pett-Ridge; John F. Stolz; Samuel M. Webb; Peter K. Weber; Paul Davies; Ariel D. Anbar; Ronald S. Oremland

Evidence is offered for arsenate replacing phosphate as a molecular building block in a Mono Lake, California, bacterium. Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.


Science | 2006

Phase Separation of Lipid Membranes Analyzed with High-Resolution Secondary Ion Mass Spectrometry

Mary L. Kraft; Peter K. Weber; Marjorie L. Longo; Ian D. Hutcheon; Steven G. Boxer

Lateral variations in membrane composition are postulated to play a central role in many cellular events, but it has been difficult to probe membrane composition and organization on length scales of tens to hundreds of nanometers. We present a high-resolution imaging secondary ion mass spectrometry technique to reveal the lipid distribution within a phase-separated membrane with a lateral resolution of ∼100 nanometers. Quantitative information about the chemical composition within small lipid domains was obtained with the use of isotopic labels to identify each molecular species. Composition variations were detected within some domains.


Annual review of biophysics | 2009

Advances in imaging secondary ion mass spectrometry for biological samples

Steven G. Boxer; Mary L. Kraft; Peter K. Weber

Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.


Science | 2007

Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles

John W. Moreau; Peter K. Weber; Michael C. Martin; Benjamin Gilbert; Ian D. Hutcheon; Jillian F. Banfield

High–spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation–based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.


Applied and Environmental Microbiology | 2008

Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS.

Sebastian Behrens; Tina Lösekann; Jennifer Pett-Ridge; Peter K. Weber; Wing On Ng; Bradley S. Stevenson; Ian D. Hutcheon; David A. Relman; Alfred M. Spormann

ABSTRACT To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with 13C-carbon and 15N-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry

Juliette A. Finzi-Hart; Jennifer Pett-Ridge; Peter K. Weber; Radu Popa; Stewart J. Fallon; Troy Gunderson; Ian D. Hutcheon; Kenneth H. Nealson; Douglas G. Capone

The marine cyanobacterium Trichodesmium is ubiquitous in tropical and subtropical seas and is an important contributor to global N and C cycling. We sought to characterize metabolic uptake patterns in individual Trichodesmium IMS-101 cells by quantitatively imaging 13C and 15N uptake with high-resolution secondary ion mass spectrometry (NanoSIMS). Trichodesmium fix both CO2 and N2 concurrently during the day and are, thus, faced with a balancing act: the O2 evolved during photosynthesis inhibits nitrogenase, the key enzyme in N2 fixation. After performing correlated transmission electron microscopy (TEM) and NanoSIMS analysis on trichome thin-sections, we observed transient inclusion of 15N and 13C into discrete subcellular bodies identified as cyanophycin granules. We speculate that Trichodesmium uses these dynamic storage bodies to uncouple CO2 and N2 fixation from overall growth dynamics. We also directly quantified both CO2 and N2 fixation at the single cell level using NanoSIMS imaging of whole cells in multiple trichomes. Our results indicate maximal CO2 fixation rates in the morning, compared with maximal N2 fixation rates in the afternoon, bolstering the argument that segregation of CO2 and N2 fixation in Trichodesmium is regulated in part by temporal factors. Spatial separation of N2 and CO2 fixation may also have a role in metabolic segregation in Trichodesmium. Our approach in combining stable isotope labeling with NanoSIMS and TEM imaging can be extended to other physiologically relevant elements and processes in other important microbial systems.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts

Jessica F. Frisz; Kaiyan Lou; Haley A. Klitzing; William P. Hanafin; Vladimir A. Lizunov; Robert L. Wilson; Kevin J. Carpenter; Raehyun Kim; Ian D. Hutcheon; Joshua Zimmerberg; Peter K. Weber; Mary L. Kraft

Sphingolipids play important roles in plasma membrane structure and cell signaling. However, their lateral distribution in the plasma membrane is poorly understood. Here we quantitatively analyzed the sphingolipid organization on the entire dorsal surface of intact cells by mapping the distribution of 15N-enriched ions from metabolically labeled 15N-sphingolipids in the plasma membrane, using high-resolution imaging mass spectrometry. Many types of control experiments (internal, positive, negative, and fixation temperature), along with parallel experiments involving the imaging of fluorescent sphingolipids—both in living cells and during fixation of living cells—exclude potential artifacts. Micrometer-scale sphingolipid patches consisting of numerous 15N-sphingolipid microdomains with mean diameters of ∼200 nm are always present in the plasma membrane. Depletion of 30% of the cellular cholesterol did not eliminate the sphingolipid domains, but did reduce their abundance and long-range organization in the plasma membrane. In contrast, disruption of the cytoskeleton eliminated the sphingolipid domains. These results indicate that these sphingolipid assemblages are not lipid rafts and are instead a distinctly different type of sphingolipid-enriched plasma membrane domain that depends upon cortical actin.


The ISME Journal | 2007

Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides

Radu Popa; Peter K. Weber; Jennifer Pett-Ridge; Juliette A Finzi; Stewart J. Fallon; Ian D. Hutcheon; Kenneth H. Nealson; Douglas G. Capone

Filamentous nitrogen fixing cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. Using high-resolution nanometer-scale secondary ion mass spectrometry (NanoSIMS) in conjunction with enriched H13CO3− and 15N2 incubations of Anabaena oscillarioides, we imaged the cellular distributions of C, N and P and 13C and 15N enrichments at multiple time points during a diurnal cycle as proxies for C and N assimilation. The temporal and spatial distributions of the newly fixed C and N were highly heterogeneous at both the intra- and inter-cellular scale, and indicative of regions performing active assimilation and biosynthesis. Subcellular components such as the neck region of heterocycts, cell division septae and putative cyanophycin granules were clearly identifiable by their elemental composition. Newly fixed nitrogen was rapidly exported from heterocysts and was evenly allocated among vegetative cells, with the exception of the most remote vegetative cells between heterocysts, which were N limited based on lower 15N enrichment. Preexisting functional heterocysts had the lowest levels of 13C and 15N enrichment, while heterocysts that were inferred to have differentiated during the experiment had higher levels of enrichment. This innovative approach, combining stable isotope labeling and NanoSIMS elemental and isotopic imaging, allows characterization of cellular development (division, heterocyst differentiation), changes in individual cell composition and cellular roles in metabolite exchange.


Environmental Microbiology | 2013

An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition

Erin E. Nuccio; Angela Hodge; Jennifer Pett-Ridge; Donald J. Herman; Peter K. Weber; Mary K. Firestone

Arbuscular mycorrhizal fungi (AMF) perform an important ecosystem service by improving plant nutrient capture from soil, yet little is known about how AMF influence soil microbial communities during nutrient uptake. We tested whether an AMF modifies the soil microbial community and nitrogen cycling during litter decomposition. A two-chamber microcosm system was employed to create a root-free soil environment to control AMF access to (13) C- and (15) N-labelled root litter. Using a 16S rRNA gene microarray, we documented that approximately 10% of the bacterial community responded to the AMF, Glomus hoi. Taxa from the Firmicutes responded positively to AMF, while taxa from the Actinobacteria and Comamonadaceae responded negatively to AMF. Phylogenetic analyses indicate that AMF may influence bacterial community assembly processes. Using nanometre-scale secondary ion mass spectrometry (NanoSIMS) we visualized the location of AMF-transported (13) C and (15) N in plant roots. Bulk isotope ratio mass spectrometry revealed that the AMF exported 4.9% of the litter (15) N to the host plant (Plantago lanceolata L.), and litter-derived (15) N was preferentially exported relative to litter-derived (13) C. Our results suggest that the AMF primarily took up N in the inorganic form, and N export is one mechanism by which AMF could modify the soil microbial community and decomposition processes.

Collaboration


Dive into the Peter K. Weber's collaboration.

Top Co-Authors

Avatar

Ian D. Hutcheon

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer Pett-Ridge

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xavier Mayali

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer E. P. Matzel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stewart J. Fallon

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua Zimmerberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge