Peter Kallinger
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Kallinger.
Analytical Chemistry | 2015
Victor U. Weiss; Jessica Z. Bereszcazk; Marlene Havlik; Peter Kallinger; Irene Gösler; Mohit Kumar; Dieter Blaas; Martina Marchetti-Deschmann; Albert J. R. Heck; Wladyslaw W. Szymanski; Günter Allmaier
Gas-phase electrophoretic mobility molecular analysis (GEMMA) separates nanometer-sized, single-charged particles according to their electrophoretic mobility (EM) diameter after transition to the gas-phase via a nano electrospray process. Electrospraying as a soft desorption/ionization technique preserves noncovalent biospecific interactions. GEMMA is therefore well suited for the analysis of intact viruses and subviral particles targeting questions related to particle size, bioaffinity, and purity of preparations. By correlating the EM diameter to the molecular mass (Mr) of standards, the Mr of analytes can be determined. Here, we demonstrate (i) the use of GEMMA in purity assessment of a preparation of a common cold virus (human rhinovirus serotype 2, HRV-A2) and (ii) the analysis of subviral HRV-A2 particles derived from such a preparation. (iii) Likewise, native mass spectrometry was employed to obtain spectra of intact HRV-A2 virions and empty viral capsids (B-particles). Charge state resolution for the latter allowed its Mr determination. (iv) Cumulatively, the data measured and published earlier were used to establish a correlation between the Mr and EM diameter for a range of globular proteins and the intact virions. Although a good correlation resulted from this analysis, we noticed a discrepancy especially for the empty and subviral particles. This demonstrates the influence of genome encapsulation (preventing analytes from shrinking upon transition into the gas-phase) on the measured analyte EM diameter. To conclude, GEMMA is useful for the determination of the Mr of intact viruses but needs to be employed with caution when subviral particles or even empty viral capsids are targeted. The latter could be analyzed by native MS.
PLOS ONE | 2016
Iga Wasiak; Aleksandra Kulikowska; Magdalena Janczewska; Magdalena Michalak; Iwona A. Cymerman; Andrzej Nagalski; Peter Kallinger; Wladyslaw W. Szymanski; Tomasz Ciach
Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier.
Analytica Chimica Acta | 2014
Victor U. Weiss; Lukas Kerul; Peter Kallinger; Wladyslaw W. Szymanski; Martina Marchetti-Deschmann; Günter Allmaier
Graphical abstract
Archive | 2014
Guenter Allmaier; Victor U. Weiss; Marlene Havlik; Peter Kallinger; Martina Marchetti-Deschmann; Wladyslaw W. Szymanski
For characterization of whole viruses, vaccine particles and virus-like-particles (VLPs) besides immunological and functional parameters usually methods as electron microscopy (EM), liquid phase separation or light scattering techniques are applied. The use of nano electrospraying (nano ES) to transfer such bio-nanoparticles (NP) from the liquid phase into the gas phase and ionization is a relative new development, i.e. to bring such kind of nano-objects as intact species into the gas-phase at atmospheric pressure. Now it is possible to generate ions with multiple charges as well as a single charge fixed on such spherical bio-NPs.
Atmospheric Chemistry and Physics | 2015
Emma Järvinen; Karoliina Ignatius; Leonid Nichman; Thomas Kristensen; Claudia Fuchs; C. R. Hoyle; Niko Florian Höppel; Joel C. Corbin; J. S. Craven; Jonathan Duplissy; Sebastian Ehrhart; Imad El Haddad; Carla Frege; H. Gordon; Tuija Jokinen; Peter Kallinger; J. Kirkby; Alexei Kiselev; K.-H. Naumann; Tuukka Petäjä; Tamara Pinterich; André S. H. Prévôt; Harald Saathoff; Thea Schiebel; Kamalika Sengupta; Mario Simon; Jay G. Slowik; Jasmin Tröstl; Annele Virtanen; Paul Vochezer
Journal of Nanoparticle Research | 2012
Peter Kallinger; Gerhard Steiner; Wladyslaw W. Szymanski
Particuology | 2013
Peter Kallinger; Victor U. Weiss; Angela Lehner; Günter Allmaier; Wladyslaw W. Szymanski
Journal of Nanoparticle Research | 2015
Peter Kallinger; Wladyslaw W. Szymanski
Journal of Aerosol Science | 2017
A. Wonaschuetz; Peter Kallinger; Wladyslaw W. Szymanski; R. Hitzenberger
HASH(0x7f331b1565e8) | 2016
Emma Järvinen; Karoliina Ignatius; Leonid Nichman; Thomas Kristensen; Claudia Fuchs; C. R. Hoyle; Niko Florian Höppel; Joel C. Corbin; J. S. Craven; Jonathan Duplissy; Sebastian Ehrhart; Imad El Haddad; Carla Frege; H. Gordon; Tuija Jokinen; Peter Kallinger; J. Kirkby; Alexei Kiselev; K.-H. Naumann; Tuukka Petäjä; Tamara Pinterich; André S. H. Prévôt; Harald Saathoff; Thea Schiebel; Kamalika Sengupta; Mario Simon; Jay G. Slowik; Jasmin Tröstl; Annele Virtanen; Paul Vochezer