Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Péter Kaló is active.

Publication


Featured researches published by Péter Kaló.


Nature | 2002

A receptor kinase gene regulating symbiotic nodule development

Gabriella Endre; Attila Kereszt; Zoltán Kevei; Sorina Mihacea; Péter Kaló; György B. Kiss

Leguminous plants are able to establish a nitrogen-fixing symbiosis with soil bacteria generally known as rhizobia. Metabolites exuded by the plant root activate the production of a rhizobial signal molecule, the Nod factor, which is essential for symbiotic nodule development. This lipo-chitooligosaccharide signal is active at femtomolar concentrations, and its structure is correlated with host specificity of symbiosis, suggesting the involvement of a cognate perception system in the plant host. Here we describe the cloning of a gene from Medicago sativa that is essential for Nod-factor perception in alfalfa, and by genetic analogy, in the related legumes Medicago truncatula and Pisum sativum. The identified ‘nodulation receptor kinase’, NORK, is predicted to function in the Nod-factor perception/transduction system (the NORK system) that initiates a signal cascade leading to nodulation. The family of ‘NORK extracellular-sequence-like’ (NSL) genes is broadly distributed in the plant kingdom, although their biological function has not been previously ascribed. We suggest that during the evolution of symbiosis an ancestral NSL system was co-opted for transduction of an external ligand, the rhizobial Nod factor, leading to development of the symbiotic root nodule.


Genetics | 2004

A Sequence-Based Genetic Map of Medicago truncatula and Comparison of Marker Colinearity with M. sativa

Hong Kyu Choi; Dong-Jin Kim; Taesik Uhm; Eric Limpens; Hyunju Lim; Jeong Hwan Mun; Péter Kaló; R. Varma Penmetsa; Andrea Seres; Olga Kulikova; Bruce A. Roe; Ton Bisseling; György B. Kiss; Douglas R. Cook

A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F2 population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map.


The Plant Cell | 2007

An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction

Patrick H. Middleton; Júlia Jakab; R. Varma Penmetsa; Colby G. Starker; Jake Doll; Péter Kaló; Radhika Prabhu; John F. Marsh; Raka M. Mitra; Attila Kereszt; Brigitta Dudás; Kathryn A. VandenBosch; Sharon R. Long; Doug R. Cook; György B. Kiss; Giles E. D. Oldroyd

Rhizobial bacteria activate the formation of nodules on the appropriate host legume plant, and this requires the bacterial signaling molecule Nod factor. Perception of Nod factor in the plant leads to the activation of a number of rhizobial-induced genes. Putative transcriptional regulators in the GRAS family are known to function in Nod factor signaling, but these proteins have not been shown to be capable of direct DNA binding. Here, we identify an ERF transcription factor, ERF Required for Nodulation (ERN), which contains a highly conserved AP2 DNA binding domain, that is necessary for nodulation. Mutations in this gene block the initiation and development of rhizobial invasion structures, termed infection threads, and thus block nodule invasion by the bacteria. We show that ERN is necessary for Nod factor–induced gene expression and for spontaneous nodulation activated by the calcium- and calmodulin-dependent protein kinase, DMI3, which is a component of the Nod factor signaling pathway. We propose that ERN is a component of the Nod factor signal transduction pathway and functions downstream of DMI3 to activate nodulation gene expression.


Molecular Genetics and Genomics | 2004

Comparative mapping between Medicago sativa and Pisum sativum

Péter Kaló; Andrea Seres; S. A. Taylor; Júlia Jakab; Zoltán Kevei; Attila Kereszt; Gabriella Endre; T. H. N. Ellis; György B. Kiss

Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.


Molecular Genetics and Genomics | 1993

Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers

György B. Kiss; Gyula Csanádi; Katalin Kálmán; Péter Kaló; László Ökrész

The genetic map for alfalfa presented here has eight linkage groups representing the haploid chromosome set of the Medicago species. The genetic map was constructed by ordering the linkage values of 89 RFLP, RAPD, isozyme and morphological markers collected from a segregating population of 138 individuals. The segregating population is self-mated progeny of an F1 hybrid plant deriving from a cross between the diploid (2n=2x=16) yellow-flowered Medicago sativa ssp. quasifalcata and the diploid (2n=2x=16) blue-flowered M. sativa ssp. coerulea. The inheritance of many traits displayed distorted segregation, indicating the presence of lethal loci in the heterozygotic parent plants. In spite of the lack of uniform segregation, linkage groups could be assigned and the order of the markers spanning > 659 centimorgans could be unambiguously determined. This value and the calculated haploid genome size for Medicago (1n=1x=1.0 x 109 bp) gives a ratio of < 1500 kb per centimorgan.


Molecular Plant-microbe Interactions | 2011

Medicago truncatula IPD3 Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses

Beatrix Horvath; Li Huey Yeun; Ágota Domonkos; Gábor Halász; Enrico Gobbato; Ferhan Ayaydin; Krisztina Miró; Sibylle Hirsch; Jongho Sun; Million Tadege; Pascal Ratet; Kirankumar S. Mysore; Jean-Michel Ané; Giles E. D. Oldroyd; Péter Kaló

Legumes form endosymbiotic associations with nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi which facilitate nutrient uptake. Both symbiotic interactions require a molecular signal exchange between the plant and the symbiont, and this involves a conserved symbiosis (Sym) signaling pathway. In order to identify plant genes required for intracellular accommodation of nitrogen-fixing bacteria and AM fungi, we characterized Medicago truncatula symbiotic mutants defective for rhizobial infection of nodule cells and colonization of root cells by AM hyphae. Here, we describe mutants impaired in the interacting protein of DMI3 (IPD3) gene, which has been identified earlier as an interacting partner of the calcium/calmodulin-dependent protein, a member of the Sym pathway. The ipd3 mutants are impaired in both rhizobial and mycorrhizal colonization and we show that IPD3 is necessary for appropriate Nod-factor-induced gene expression. This indicates that IPD3 is a member of the common Sym pathway. We observed differences in the severity of ipd3 mutants that appear to be the result of the genetic background. This supports the hypothesis that IPD3 function is partially redundant and, thus, additional genetic components must exist that have analogous functions to IPD3. This explains why mutations in an essential component of the Sym pathway have defects at late stages of the symbiotic interactions.


Theoretical and Applied Genetics | 2000

Construction of an improved linkage map of diploid alfalfa (Medicago sativa)

Péter Kaló; Gabriella Endre; L. Zimányi; Gyula Csanádi; György B. Kiss

Abstract An improved genetic map of diploid (2n=2x=16) alfalfa has been developed by analyzing the inheritance of more than 800 genetic markers on the F2 population of 137 plant individuals. The F2 segregating population derived from a self-pollinated F1 hybrid individual of the cross Medicago sativa ssp. quasifalcata ×Medicago sativa ssp. coerulea. This mapping population was the same one which had been used for the construction of our previous alfalfa genetic map. The genetic analyses were performed by using maximum-likelihood equations and related computer programs. The improved genetic map of alfalfa in its present form contains 868 markers (four morphological, 12 isozyme, 26 seed protein, 216 RFLP, 608 RAPD and two specific PCR markers) in eight linkage groups. Of the markers 80 are known genes, including 2 previously cytologically localized genes, the rDNA and the β-tubulin loci. The genetic map covers 754 centimorgans (cM) with an average marker density of 0.8/cM. The correlation between the physical and genetic distances is about 1000–1300 kilobase pairs per centiMorgan. In this map, the linkage relationships of some markers on linkage groups 6, 7, and 8 are different from the previously published one. The cause of this discrepancy was that the genetic linkage of markers displaying distorted segregation (characterized by an overwhelming number of heterozygous individuals) had artificially linked genetic regions that turned out to be unlinked. To overcome the disadvantageous influence of the excess number of heterozygous genotypes on the recombination fractions, we used recently described maximum-likelihood formulas and colormapping, which allowed us to exclude the misleading linkages and to estimate the genetic distances more precisely.


BMC Plant Biology | 2005

Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana.

Joann Mudge; Steven B. Cannon; Péter Kaló; Giles E. D. Oldroyd; Bruce A. Roe; Christopher D. Town; Nevin D. Young

BackgroundRecent genome sequencing enables mega-base scale comparisons between related genomes. Comparisons between animals, plants, fungi, and bacteria demonstrate extensive synteny tempered by rearrangements. Within the legume plant family, glimpses of synteny have also been observed. Characterizing syntenic relationships in legumes is important in transferring knowledge from model legumes to crops that are important sources of protein, fixed nitrogen, and health-promoting compounds.ResultsWe have uncovered two large soybean regions exhibiting synteny with M. truncatula and with a network of segmentally duplicated regions in Arabidopsis. In all, syntenic regions comprise over 500 predicted genes spanning 3 Mb. Up to 75% of soybean genes are colinear with M. truncatula, including one region in which 33 of 35 soybean predicted genes with database support are colinear to M. truncatula. In some regions, 60% of soybean genes share colinearity with a network of A. thaliana duplications. One region is especially interesting because this 500 kbp segment of soybean is syntenic to two paralogous regions in M. truncatula on different chromosomes. Phylogenetic analysis of individual genes within these regions demonstrates that one is orthologous to the soybean region, with which it also shows substantially denser synteny and significantly lower levels of synonymous nucleotide substitutions. The other M. truncatula region is inferred to be paralogous, presumably resulting from a duplication event preceding speciation.ConclusionThe presence of well-defined M. truncatula segments showing orthologous and paralogous relationships with soybean allows us to explore the evolution of contiguous genomic regions in the context of ancient genome duplication and speciation events.


Plant Physiology | 2009

LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes.

Ernö Kiss; Boglárka Oláh; Péter Kaló; Monica Morales; Anne B. Heckmann; Andrea Borbola; Anita Lózsa; Katalin Kontár; Patrick H. Middleton; J. Allan Downie; Giles E. D. Oldroyd; Gabriella Endre

The formation of a nitrogen-fixing nodule requires the coordinated development of rhizobial colonization and nodule organogenesis. Based on its mutant phenotype, lumpy infections (lin), LIN functions at an early stage of the rhizobial symbiotic process, required for both infection thread growth in root hair cells and the further development of nodule primordia. We show that spontaneous nodulation activated by the calcium- and calmodulin-dependent protein kinase is independent of LIN; thus, LIN is not necessary for nodule organogenesis. From this, we infer that LIN predominantly functions during rhizobial colonization and that the abortion of this process in lin mutants leads to a suppression of nodule development. Here, we identify the LIN gene in Medicago truncatula and Lotus japonicus, showing that it codes for a predicted E3 ubiquitin ligase containing a highly conserved U-box and WD40 repeat domains. Ubiquitin-mediated protein degradation is a universal mechanism to regulate many biological processes by eliminating rate-limiting enzymes and key components such as transcription factors. We propose that LIN is a regulator of the component(s) of the nodulation factor signal transduction pathway and that its function is required for correct temporal and spatial activity of the target protein(s).


Plant Molecular Biology | 1995

Isolation of a full-length mitotic cyclin cDNA clone CycIIIMs from Medicago sativa: Chromosomal mapping and expression

Arnould Savouré; Attila Fehér; Péter Kaló; György Petrovics; Gyula Csanádi; Judit Szécsi; György B. Kiss; Spencer Brown; Adam Kondorosi; Eva Kondorosi

Cyclins in association with the protein kinase p34cdc2and related cyclin-dependent protein kinases (cdks) are key regulatory elements in controlling the cell division cycle. Here, we describe the identification and characterization of a full-length cDNA clone of alfalfa mitotic cyclin, termed CycIIIMs. Computer analysis of known plant cyclin gene sequences revealed that this cyclin belongs to the same structural group as the other known partial alfalfa cyclin sequences. Genetic segregation analysis based on DNA-DNA hybridization data showed that the CycIIIMs gene(s) locates in a single chromosomal region on linkage group 5 of the alfalfa genetic map between RFLP markers UO89A and CG13. The assignment of this cyclin to the mitotic cyclin class was based on its cDNA-derived sequence and its differential expression during G2/M cell cycle phase transition of a partially synchronized alfalfa cell culture. Sequence analysis indicated common motifs with both the A- and B-types of mitotic cyclins similarly to the newly described B3-type of animal cyclins.

Collaboration


Dive into the Péter Kaló's collaboration.

Top Co-Authors

Avatar

György B. Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gabriella Endre

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Attila Kereszt

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyula Csanádi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zoltán Kevei

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Andrea Seres

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

P. Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge