Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Karczewski is active.

Publication


Featured researches published by Peter Karczewski.


Circulation Research | 1999

Identification and Expression of δ-Isoforms of the Multifunctional Ca2+/Calmodulin-Dependent Protein Kinase in Failing and Nonfailing Human Myocardium

Brigitte Hoch; Rudolf Meyer; Roland Hetzer; Krause Eg; Peter Karczewski

Despite its importance for the regulation of heart function, little is known about the isoform expression of the multifunctional Ca2+/calmodulin-dependent protein kinase (CaMKII) in human myocardium. In this study, we investigated the spectrum of CaMKII isoforms delta2, delta3, delta4, delta8, and delta9 in human striated muscle tissue. Isoform delta3 is characteristically expressed in cardiac muscle. In skeletal muscle, specific expression of a new isoform termed delta11 is demonstrated. Complete sequencing of human delta2 cDNA, representing all common features of the investigated CaMKII subclass, revealed its high homology to the corresponding rat cDNA. Comparative semiquantitative reverse transcription-polymerase chain reaction analyses from left ventricular tissues of normal hearts and from patients suffering from dilated cardiomyopathy showed a significant increase in transcript levels of isoform delta3 relative to the expression of glyceraldehyde-3-phosphate dehydrogenase in diseased hearts (101. 6+/-11.0% versus 64.9+/-9.9% in the nonfailing group; P<0.05, n=6). Transcript levels of the other investigated cardiac CaMKII isoforms remained unchanged. At the protein level, by using a subclass-specific antibody, we observed a similar increase of a delta-CaMKII-specific signal (7.2+/-1.0 versus 3.8+/-0.7 optical density units in the nonfailing group; P<0.05, n=4 through 6). The diseased state of the failing hearts was confirmed by a significant increase in transcript levels for atrial natriuretic peptide (292. 9+/-76.4% versus 40.1+/-3.2% in the nonfailing group; P<0.05, n=3 through 6). Our data characterize for the first time the delta-CaMKII isoform expression pattern in human hearts and demonstrate changes in this expression pattern in heart failure.


Circulation Research | 1999

Regulation of the Transient Outward K+ Current by Ca2+/Calmodulin-Dependent Protein Kinases II in Human Atrial Myocytes

Sophie Tessier; Peter Karczewski; Krause Eg; Yves Pansard; Christophe Acar; Michel Lang-Lazdunski; Jean-Jacques Mercadier; Stéphane N. Hatem

Ca(2+)/calmodulin-dependent protein kinases II (CaMKII) have important functions in regulating cardiac excitability and contractility. In the present study, we examined whether CaMKII regulated the transient outward K(+) current (I(to)) in whole-cell patch-clamped human atrial myocytes. We found that a specific CaMKII inhibitor, KN-93 (20 micromol/L), but not its inactive analog, KN-92, accelerated the inactivation of I(to) (tau(fast): 66.9+/-4.4 versus 43.0+/-4.4 ms, n=35; P<0.0001) and inhibited its maintained component (at +60 mV, 4.9+/-0.4 versus 2.8+/-0.4 pA/pF, n = 35; P<0. 0001), leading to an increase in the extent of its inactivation. Similar effects were observed by dialyzing cells with a peptide corresponding to CaMKII residues 281 to 309 or with autocamtide-2-related inhibitory peptide and by external application of the calmodulin inhibitor calmidazolium, which also suppressed the effects of KN-93. Furthermore, the phosphatase inhibitor okadaic acid (500 nmol/L) slowed I(to) inactivation, increased I(sus), and inhibited the effects of KN-93. Changes in [Ca(2+)](i) by dialyzing cells with approximately 30 nmol/L Ca(2+) or by using the fast Ca(2+) buffer BAPTA had opposite effects on I(to). In BAPTA-loaded myocytes, I(to) was less sensitive to KN-93. In myocytes from patients in chronic atrial fibrillation, characterized by a prominent I(sus), KN-93 still increased the extent of inactivation of I(to). Western blot analysis of atrial samples showed that delta-CaMKII expression was enhanced during chronic atrial fibrillation. In conclusion, CaMKII control the extent of inactivation of I(to) in human atrial myocytes, a process that could contribute to I(to) alterations observed during chronic atrial fibrillation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

S100A1: a regulator of myocardial contractility.

Patrick Most; Philipp Ehlermann; Sven T. Pleger; Michael Reppel; Melanie Börries; Ferraydoon Niroomand; Burkert Pieske; Paul M. L. Janssen; Thomas Eschenhagen; Peter Karczewski; Godfrey L. Smith; Walter J. Koch; Hugo A. Katus; Andrew Remppis

S100A1, a Ca2+ binding protein of the EF-hand type, is preferentially expressed in myocardial tissue and has been found to colocalize with the sarcoplasmic reticulum (SR) and the contractile filaments in cardiac tissue. Because S100A1 is known to modulate SR Ca2+ handling in skeletal muscle, we sought to investigate the specific role of S100A1 in the regulation of myocardial contractility. To address this issue, we investigated contractile properties of adult cardiomyocytes as well as of engineered heart tissue after S100A1 adenoviral gene transfer. S100A1 gene transfer resulted in a significant increase of unloaded shortening and isometric contraction in isolated cardiomyocytes and engineered heart tissues, respectively. Analysis of intracellular Ca2+ cycling in S100A1-overexpressing cardiomyocytes revealed a significant increase in cytosolic Ca2+ transients, whereas in functional studies on saponin-permeabilized adult cardiomyocytes, the addition of S100A1 protein significantly enhanced SR Ca2+ uptake. Moreover, in Triton-skinned ventricular trabeculae, S100A1 protein significantly decreased myofibrillar Ca2+ sensitivity ([EC50%]) and Ca2+ cooperativity, whereas maximal isometric force remained unchanged. Our data suggest that S100A1 effects are cAMP independent because cellular cAMP levels and protein kinase A-dependent phosphorylation of phospholamban were not altered, and carbachol failed to suppress S100A1 actions. These results show that S100A1 overexpression enhances cardiac contractile performance and establish the concept of S100A1 as a regulator of myocardial contractility. S100A1 thus improves cardiac contractile performance both by regulating SR Ca2+ handling and myofibrillar Ca2+ responsiveness.


Journal of Biological Chemistry | 2003

Transgenic Overexpression of the Ca2+-binding Protein S100A1 in the Heart Leads to Increased in Vivo Myocardial Contractile Performance

Patrick Most; Andrew Remppis; Sven T. Pleger; Eva Löffler; Philipp Ehlermann; Christiane Kleuss; Joerg Heierhorst; Patricia Ruiz; Henning Witt; Peter Karczewski; Lan Mao; Howard A. Rockman; Sandra J. Duncan; Hugo A. Katus; Walter J. Koch

S100A1, a Ca2+-sensing protein of the EF-hand family, is most highly expressed in myocardial tissue, and cardiac S100A1 overexpression in vitro has been shown to enhance myocyte contractile properties. To study the physiological consequences of S100A1 in vivo, transgenic mice were developed with cardiac-restricted overexpression of S100A1. Characterization of two independent transgenic mouse lines with ∼4-fold overexpression of S100A1 in the myocardium revealed a marked augmentation of in vivo basal cardiac function that remained elevated after β-adrenergic receptor stimulation. Contractile function and Ca2+ handling properties were increased in ventricular cardiomyocytes isolated from S100A1 transgenic mice. Enhanced cellular Ca2+ cycling by S100A1 was associated both with increased sarcoplasmic reticulum Ca2+ content and enhanced sarcoplasmic reticulum Ca2+-induced Ca2+ release, and S100A1 was shown to associate with the cardiac ryanodine receptor. No alterations in β-adrenergic signal transduction or major cardiac Ca2+-cycling proteins occurred, and there were no signs of hypertrophy with chronic cardiac S100A1 overexpression. Our findings suggest that S100A1 plays an important in vivo role in the regulation of cardiac function perhaps through interacting with the ryanodine receptor. Because S100A1 protein expression is down-regulated in heart failure, increasing S100A1 expression in the heart may represent a novel means to augment contractility.


Circulation | 1999

β2-Adrenergic cAMP Signaling Is Uncoupled From Phosphorylation of Cytoplasmic Proteins in Canine Heart

Meike Kuschel; Ying Ying Zhou; Harold A. Spurgeon; Sabine Bartel; Peter Karczewski; Sheng Jun Zhang; Krause Eg; Edward G. Lakatta; Rui Ping Xiao

BACKGROUND Recent studies of beta-adrenergic receptor (beta-AR) subtype signaling in in vitro preparations have raised doubts as to whether the cAMP/protein kinase A (PKA) signaling is activated in the same manner in response to beta2-AR versus beta1-AR stimulation. METHODS AND RESULTS The present study compared, in the intact dog, the magnitude and characteristics of chronotropic, inotropic, and lusitropic effects of cAMP accumulation, PKA activation, and PKA-dependent phosphorylation of key effector proteins in response to beta-AR subtype stimulation. In addition, many of these parameters and L-type Ca2+ current (ICa) were also measured in single canine ventricular myocytes. The results indicate that although the cAMP/PKA-dependent phosphorylation cascade activated by beta1-AR stimulation could explain the resultant modulation of cardiac function, substantial beta2-AR-mediated chronotropic, inotropic, and lusitropic responses occurred in the absence of PKA activation and phosphorylation of nonsarcolemmal proteins, including phospholamban, troponin I, C protein, and glycogen phosphorylase kinase. However, in single canine myocytes, we found that beta2-AR-stimulated increases in both ICa and contraction were abolished by PKA inhibition. Thus, the beta2-AR-directed cAMP/PKA signaling modulates sarcolemmal L-type Ca2+ channels but does not regulate PKA-dependent phosphorylation of cytoplasmic proteins. CONCLUSIONS These results indicate that the dissociation of beta2-AR signaling from cAMP regulatory systems is only apparent and that beta2-AR-stimulated cAMP/PKA signaling is uncoupled from phosphorylation of nonsarcolemmal regulatory proteins involved in excitation-contraction coupling.


Circulation | 1999

Activation of β2-Adrenergic Receptors Hastens Relaxation and Mediates Phosphorylation of Phospholamban, Troponin I, and C-Protein in Ventricular Myocardium From Patients With Terminal Heart Failure

Alberto J. Kaumann; Sabine Bartel; Peter C. M. Molenaar; Louise Sanders; Kylie Burrell; Donathe Vetter; Petra Hempel; Peter Karczewski; Krause Eg

BACKGROUND Catecholamines hasten cardiac relaxation through beta-adrenergic receptors, presumably by phosphorylation of several proteins, but it is unknown which receptor subtypes are involved in human ventricle. We assessed the role of beta1- and beta2-adrenergic receptors in phosphorylating proteins implicated in ventricular relaxation. METHODS AND RESULTS Right ventricular trabeculae, obtained from freshly explanted hearts of patients with dilated cardiomyopathy (n=5) or ischemic cardiomyopathy (n=5), were paced at 60 bpm. After measurement of the contractile and relaxant effects of epinephrine (10 micromol/L) or zinterol (10 micromol/L), mediated through beta2-adrenergic receptors, and of norepinephrine (10 micromol/L), mediated through beta1-adrenergic receptors, tissues were freeze clamped. We assessed phosphorylation of phospholamban, troponin I, and C-protein, as well as specific phosphorylation of phospholamban at serine 16 and threonine 17. Data did not differ between the 2 disease groups and were therefore pooled. Epinephrine, zinterol, and norepinephrine increased contractile force to approximately the same extent, hastened the onset of relaxation by 15+/-3%, 5+/-2%, and 20+/-3%, respectively, and reduced the time to half-relaxation by 26+/-3%, 21+/-3%, and 37+/-3%. These effects of epinephrine, zinterol, and norepinephrine were associated with phosphorylation (pmol phosphate/mg protein) of phospholamban 14+/-3, 12+/-4, and 12+/-3; troponin I 40+/-7, 33+/-7, and 31+/-6; and C-protein 7.2+/-1.9, 9.3+/-1.4, and 7.5+/-2.0. Phosphorylation of phospholamban occurred at both Ser16 and Thr17 residues through both beta1- and beta2-adrenergic receptors. CONCLUSIONS Norepinephrine and epinephrine hasten human ventricular relaxation and promote phosphorylation of implicated proteins through both beta1- and beta2-adrenergic receptors, thereby potentially improving diastolic function.


FEBS Letters | 1993

Phosphorylation of the L‐type calcium channel β subunit is involved in β‐adrenergic signal transduction in canine myocardium

Hannelore Haase; Peter Karczewski; Ralf Beckert; Krause Eg

Cyclic AMP‐mediated phosphorylation of calcium channel submits was studied in vitro and in vivo in preparations from dog heart. Calcium channels in native cardiac membranes were phosphorylated by cAMP‐dependent protein kinase (PKA) solubilized with digitonin and subsequently immunoprecipitated using a polyclonal antibody generated against the deduced carboxy‐terminal sequence of the cardiac β subunit. A 62 kDa protein was identified as the major PKA‐substrate in the immunoprecipitates. In the intact myocardium, this putative β subunit was found to be phosphorylated in response to cAMP elevating agents. In contrast, no phosphorylation of a protein with an electrophoretic mobility similar to the α1 subunit was detected, although 1,4‐dihydropyridine receptor sites were recovered in the immunoprecipitates. Thus, we suggest that PKA‐mediated phosphorylation of the β subunit is the major mechanism for β‐adrenergic regulation of cardiac L‐type calcium channel activity.


PLOS ONE | 2008

Potential Relevance of α1-Adrenergic Receptor Autoantibodies in Refractory Hypertension

Katrin Wenzel; Hannelore Haase; Gerd Wallukat; Wolfgang Derer; Sabine Bartel; Volker Homuth; Florian Herse; Norbert Hubner; Herbert Schulz; Marion Janczikowski; Carsten Lindschau; Christoph Schroeder; Stefan Verlohren; Ingo Morano; Dominik N. Müller; Friedrich C. Luft; Rainer Dietz; Ralf Dechend; Peter Karczewski

Background Agonistic autoantibodies directed at the α1-adrenergic receptor (α1-AAB) have been described in patients with hypertension. We implied earlier that α1-AAB might have a mechanistic role and could represent a therapeutic target. Methodology/Principal Findings To pursue the issue, we performed clinical and basic studies. We observed that 41 of 81 patients with refractory hypertension had α1-AAB; after immunoadsorption blood pressure was significantly reduced in these patients. Rabbits were immunized to generate α1-adrenergic receptor antibodies (α1-AB). Patient α1-AAB and rabbit α1-AB were purified using affinity chromatography and characterized both by epitope mapping and surface plasmon resonance measurements. Neonatal rat cardiomyocytes, rat vascular smooth muscle cells (VSMC), and Chinese hamster ovary cells transfected with the human α1A-adrenergic receptor were incubated with patient α1-AAB and rabbit α1-AB and the activation of signal transduction pathways was investigated by Western blot, confocal laser scanning microscopy, and gene expression. We found that phospholipase A2 group IIA (PLA2-IIA) and L-type calcium channel (Cacna1c) genes were upregulated in cardiomyocytes and VSMC after stimulation with both purified antibodies. We showed that patient α1-AAB and rabbit α1-AB result in protein kinase C alpha activation and transient extracellular-related kinase (EKR1/2) phosphorylation. Finally, we showed that the antibodies exert acute effects on intracellular Ca2+ in cardiomyocytes and induce mesentery artery segment contraction. Conclusions/Significance Patient α1-AAB and rabbit α1-AB can induce signaling pathways important for hypertension and cardiac remodeling. Our data provide evidence for a potential clinical relevance for α1-AAB in hypertensive patients, and the notion of immunity as a possible cause of hypertension.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Ser16 prevails over Thr17 phospholamban phosphorylation in the β-adrenergic regulation of cardiac relaxation

Meike Kuschel; Peter Karczewski; Petra Hempel; Wolfgang-Peter Schlegel; Krause Eg; Sabine Bartel

Phospholamban is a critical regulator of sarcoplasmic reticulum Ca2+-ATPase and myocardial contractility. To determine the extent of cross signaling between Ca2+ and cAMP pathways, we have investigated the β-adrenergic-induced phosphorylation of Ser16 and Thr17 of phospholamban in perfused rat hearts using antibodies recognizing phospholamban phosphorylated at either position. Isoproterenol caused the dose-dependent phosphorylation of Ser16 and Thr17 with strikingly different half-maximal values (EC50 = 4.5 ± 1.6 and 28.2 ± 1.4 nmol/l, respectively). The phosphorylation of Ser16 induced by isoproterenol, forskolin, or 3-isobutyl-1-methylxanthine correlated to increased cardiac relaxation ( r = 0.96), whereas phosphorylation of Thr17 did not. Elevation of extracellular Ca2+did not induce phosphorylation at Thr17; only in the presence of a submaximal dose of isoproterenol, phosphorylation at Thr17 increased eightfold without additional effects on relaxation rate. Thr17 phosphorylation was partially affected by ryanodine and was completely abolished in the presence of 1 μmol/l verapamil or nifedipine. The data indicate that 1) phosphorylation of phospholamban at Ser16 by cAMP-dependent protein kinase is the main regulator of β-adrenergic-induced cardiac relaxation definitely preceding Thr17 phosphorylation and 2) the β-adrenergic-mediated phosphorylation of Thr17 by Ca2+-calmodulin-dependent protein kinase required influx of Ca2+through the L-type Ca2+ channel.


Molecular and Cellular Biochemistry | 1996

In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines

Hannelore Haase; Sabine Bartel; Peter Karczewski; Ingo Morano; Krause Eg

In canine myocardium, the β-subunit of the L-type Ca2+ channel is phosphorylated by cAMP dependent protein kinase in vitro as well as in vivo (Haase et al. FEBS Lett 335: 217–222, 1993). We have assessed the identity of the β-subunit as well as its in vivo phosphorylation in representative experimental groups of catecholamine-challenged canine hearts. Adrenergic stimulation by high doses of both noradrenaline and isoprenaline induced rapid (within 20 sec) and nearly complete phosphorylation of the Ca2+ channel β-subunit. Phosphorylation in vivo was about 4-fold higher as compared to untreated controls. When related to catecholamine-depleted (reserpine-treated) hearts noradrenaline and isoprenaline increased the in vivo phosphorylation of the β-subunit even 8-fold. This phosphorylation correlated positively with tissue levels of cAMP, endogenous particulated cAMP-dependent protein kinase (PKA) and the rate of contractile force development dP/dtmax. The results imply the involvement of a PKA-mediated phosphorylation of the Ca2+ channel β-subunit in the adrenergic stimulation of intact canine myocardium.

Collaboration


Dive into the Peter Karczewski's collaboration.

Top Co-Authors

Avatar

Krause Eg

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Sabine Bartel

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Hannelore Haase

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Ingo Morano

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Petra Hempel

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Brigitte Hoch

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Gerd Wallukat

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Marion Bimmler

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Donathe Vetter

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Schulze

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge