Peter Kasper
Federal Institute for Drugs and Medical Devices
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Kasper.
Nature Biotechnology | 2010
Frank Dieterle; Frank D. Sistare; Federico Goodsaid; Marisa Papaluca; Josef S. Ozer; Craig P. Webb; William Baer; Anthony J. Senagore; Matthew J. Schipper; Jacky Vonderscher; Stefan Sultana; David Gerhold; Jonathan A. Phillips; Gerard Maurer; Kevin Carl; David Laurie; Ernie Harpur; Manisha Sonee; Daniela Ennulat; Dan Holder; Dina Andrews-Cleavenger; Yi Zhong Gu; Karol L. Thompson; Peter L. Goering; Jean Marc Vidal; Eric Abadie; Romaldas Mačiulaitis; David Jacobson-Kram; Albert DeFelice; Elizabeth Hausner
The first formal qualification of safety biomarkers for regulatory decision making marks a milestone in the application of biomarkers to drug development. Following submission of drug toxicity studies and analyses of biomarker performance to the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) by the Predictive Safety Testing Consortiums (PSTC) Nephrotoxicity Working Group, seven renal safety biomarkers have been qualified for limited use in nonclinical and clinical drug development to help guide safety assessments. This was a pilot process, and the experience gained will both facilitate better understanding of how the qualification process will probably evolve and clarify the minimal requirements necessary to evaluate the performance of biomarkers of organ injury within specific contexts.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2008
David Kirkland; Peter Kasper; Lutz Müller; Raffaella Corvi; Günter Speit
At a recent ECVAM workshop considering ways to reduce the frequency of irrelevant positive results in mammalian cell genotoxicity tests [D. Kirkland, S. Pfuhler, D. Tweats, M. Aardema, R. Corvi, F. Darroudi, A. Elhajouji, H.-R. Glatt, P. Hastwell, M. Hayashi, P. Kasper, S. Kirchner, A. Lynch, D. Marzin, D. Maurici, J.-R. Meunier, L. Müller, G. Nohynek, J. Parry, E. Parry, V. Thybaud, R. Tice, J. van Benthem, P. Vanparys, P. White, How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary followup animal tests: Report of an ECVAM Workshop, Mutat. Res. 628 (2007) 31-55], recommendations for improvements/modifications to existing tests, and suggestions for new assays were made. Following on from this, it was important to identify chemicals that could be used in the evaluation of modified or new assays. An expert panel was therefore convened and recommendations made for chemicals to fit three different sets of characteristics, namely: This paper therefore contains these three recommended lists of chemicals and describes how these should be used for any test-evaluation programme.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2000
Lutz Müller; Peter Kasper
Issues of biological relevance and thresholds for genotoxicity are discussed here based upon the background of experience with the submissions for the approval of new pharmaceuticals to the German regulatory authority over the period between 1990 and 1997. This experience shows that out of the genotoxicity test systems which are required according to existing guidelines in the European Union (EU), the in vitro tests for chromosomal aberrations (CA) and the mouse lymphoma tk assays (MLA) yield a rate of positives that is about four-fold higher than that of other genotoxicity tests. A detailed analysis of chemical and pharmacological classes of compounds and their effects in these systems reveals that in addition to direct DNA reactivity several mechanisms of indirect genotoxicity such as nucleoside analogue incorporation into DNA, interaction with microtubule assembly, topoisomerase inhibition and high levels of cytotoxicity are relevant. New pharmaceuticals, for which the latter mechanisms apply, often display threshold-like characteristics in their genotoxic effects in vitro or even in vivo in experimental animals. This casts doubt upon the relevance of positive in vitro test results for such compounds. However, the discussion of examples shows that it may not be easy to demonstrate the exact thresholded mechanism of genotoxicity in a given case. In particular, the demonstration of a coincidence of genotoxicity and high levels of cytotoxicity, which seems to be a major factor for biologically non-relevant in vitro positive new pharmaceuticals, usually requires quite extensive testing. Hence, for new pharmaceuticals it is practice to provide in addition to in vitro results that may be thresholded a wealth of information from in vivo studies on genotoxicity, carcinogenicity, metabolism, pharmacokinetics, etc. the results of which help in assessing the biological relevance of in vitro positives. The regulatory acknowledgement of biologically non-relevant, thresholded mechanisms of (in vitro) genotoxicity in addition to those that are considered relevant for human risk ensures a better understanding of test results and is needed for the credibility of genotoxicity testing practice in general.
Nature Biotechnology | 2010
Frank D. Sistare; Frank Dieterle; Sean P. Troth; Daniel J. Holder; David Gerhold; Dina Andrews-Cleavenger; William Baer; Graham Betton; Denise I. Bounous; Kevin Carl; Nathaniel Collins; Peter L. Goering; Federico Goodsaid; Yi Zhong Gu; Valerie Guilpin; Ernie Harpur; Alita Hassan; David Jacobson-Kram; Peter Kasper; David Laurie; Beatriz Silva Lima; Romaldas Mačiulaitis; William Mattes; Gerard Maurer; Leslie Obert; Josef S. Ozer; Marisa Papaluca-Amati; Jonathan A. Phillips; Mark Pinches; Matthew J. Schipper
Application of any new biomarker to support safety-related decisions during regulated phases of drug development requires provision of a substantial data set that critically assesses analytical and biological performance of that biomarker. Such an approach enables stakeholders from industry and regulatory bodies to objectively evaluate whether superior standards of performance have been met and whether specific claims of fit-for-purpose use are supported. It is therefore important during the biomarker evaluation process that stakeholders seek agreement on which critical experiments are needed to test that a biomarker meets specific performance claims, how new biomarker and traditional comparators will be measured and how the resulting data will be merged, analyzed and interpreted.
Toxicological Sciences | 2008
Mark R. Fielden; Alex Nie; Michael McMillian; Chandi S. Elangbam; Bruce A. Trela; Yi Yang; Robert T. Dunn; Yvonne Dragan; Ronny Fransson-Stehen; Matthew S. Bogdanffy; Stephen P. Adams; William R. Foster; Shen-Jue Chen; Phil Rossi; Peter Kasper; David Jacobson-Kram; Kay S. Tatsuoka; Patrick J. Wier; Jeremy Gollub; Donald N. Halbert; Alan Roter; Jamie K. Young; Joseph F. Sina; Jennifer Marlowe; Hans-Joerg Martus; Andrew J. Olaharski; Nigel Roome; Paul Nioi; Ingrid Pardo; Ron Snyder
The Critical Path Institute recently established the Predictive Safety Testing Consortium, a collaboration between several companies and the U.S. Food and Drug Administration, aimed at evaluating and qualifying biomarkers for a variety of toxicological endpoints. The Carcinogenicity Working Group of the Predictive Safety Testing Consortium has concentrated on sharing data to test the predictivity of two published hepatic gene expression signatures, including the signature by Fielden et al. (2007, Toxicol. Sci. 99, 90-100) for predicting nongenotoxic hepatocarcinogens, and the signature by Nie et al. (2006, Mol. Carcinog. 45, 914-933) for predicting nongenotoxic carcinogens. Although not a rigorous prospective validation exercise, the consortium approach created an opportunity to perform a meta-analysis to evaluate microarray data from short-term rat studies on over 150 compounds. Despite significant differences in study designs and microarray platforms between laboratories, the signatures proved to be relatively robust and more accurate than expected by chance. The accuracy of the Fielden et al. signature was between 63 and 69%, whereas the accuracy of the Nie et al. signature was between 55 and 64%. As expected, the predictivity was reduced relative to internal validation estimates reported under identical test conditions. Although the signatures were not deemed suitable for use in regulatory decision making, they were deemed worthwhile in the early assessment of drugs to aid decision making in drug development. These results have prompted additional efforts to rederive and evaluate a QPCR-based signature using these samples. When combined with a standardized test procedure and prospective interlaboratory validation, the accuracy and potential utility in preclinical applications can be ascertained.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2000
Wilhelm von der Hude; Sabine Kalweit; Günter Engelhardt; Sinead McKiernan; Peter Kasper; Renate Slacik-Erben; Herbert G Miltenburger; Naveed Honarvar; Rudolf Fahrig; Bernd Görlitz; Silvio Albertini; Stephan Kirchner; Dietmar Utesch; Franziska Pötter-Locher; Helga Stopper; Stephan Madle
A collaborative study with 10 participating laboratories was conducted to evaluate a test protocol for the performance of the in vitro micronucleus (MN) test using the V79 cell line with one treatment and one sampling time only. A total of 26 coded substances were tested in this study for MN-inducing properties. Three substances were tested by all 10 laboratories and 23 substances were tested by three or four laboratories in parallel. Six aneugenic, 7 clastogenic and 6 non-genotoxic chemicals were uniformly recognised as such by all laboratories. Three chemicals were tested uniformly negative by three laboratories although also clastogenic properties have been reported for these substances. Another set of three clastogenic substances showed inconsistent results and one non-clastogenic substance was found to be positive by one out of three laboratories. Within the study, the applicability of the determination of a proliferation index (PI) as an internal cytotoxicity parameter in comparison with the determination of the mitotic index (MI) was also evaluated. Both parameters were found to be useful for the interpretation of the MN test result with regard to the control of cell cycle kinetics and the mode of action for MN induction. The MN test in vitro was found to be easy to perform and its results were mainly in accordance with results from chromosomal aberration tests in vitro.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2009
Stefan Pfuhler; David Kirkland; Peter Kasper; Makoto Hayashi; Philippe Vanparys; Paul L. Carmichael; Stephen D. Dertinger; David A. Eastmond; Azeddine Elhajouji; Cyrille Krul; Andreas Rothfuss; Gabriele Schoening; Andrew Smith; Guenter Speit; Claire Thomas; Jan van Benthem; Raffaella Corvi
In vivo genetic toxicology tests measure direct DNA damage or the formation of gene or chromosomal mutations, and are used to predict the mutagenic and carcinogenic potential of compounds for regulatory purposes and/or to follow-up positive results from in vitro testing. These tests are widely used and consume large numbers of animals, with a foreseeable marked increase as a result of the EU chemicals legislation (REACH), which may require follow-up of any positive outcome in the in vitro standard battery with appropriate in vivo tests, regardless of the tonnage level of the chemical. A 2-day workshop with genotoxicity experts from academia, regulatory agencies and industry was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) in Ranco, Italy from 24 to 25 June 2008. The objectives of the workshop were to discuss how to reduce the number of animals in standard genotoxicity tests, whether the application of smarter test strategies can lead to lower animal numbers, and how the possibilities for reduction can be promoted and implemented. The workshop agreed that there are many reduction options available that are scientifically credible and therefore ready for use. Most of these are compliant with regulatory guidelines, i.e. the use of one sex only, one administration and two sampling times versus two or three administrations and one sampling time for micronucleus (MN), chromosomal aberration (CA) and Comet assays; and the integration of the MN endpoint into repeat-dose toxicity studies. The omission of a concurrent positive control in routine CA and MN tests has been proven to be scientifically acceptable, although the OECD guidelines still require this; also the combination of acute MN and Comet assay studies are compliant with guidelines, except for sampling times. Based on the data presented at the workshop, the participants concluded that these options have not been sufficiently utilized to date. Key factors for this seem to be the uncertainty regarding regulatory compliance/acceptance, lack of awareness, and an in many cases unjustified uncertainty regarding the scientific acceptance of reduction options. The workshop therefore encourages the use and promotion of these options as well as the dissemination of data related to reduction opportunities by the scientific community in order to boost the acceptance level of these approaches. Furthermore, experimental proof is needed and under way to demonstrate the credibility of additional options for reduction of the number of animals, such as the integration of the Comet assay into repeat-dose toxicity studies.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 1999
Birgit Kersten; J. Zhang; Susanne Brendler-Schwaab; Peter Kasper; Lutz Müller
Recent reports on the photochemical carcinogenicity and photochemical genotoxicity of fluoroquinolone antibacterials led to an increasing awareness for the need of a standard approach to test for photochemical genotoxicity. In this study the micronucleus test using V79 cells was adapted to photogenotoxicity testing. Results of using different UVA/UVB relationships enabled us to identify a suitable irradiation regimen for the activation of different kinds of photosensitizers. Using this regimen, 8-methoxypsoralen and the fluoroquinolones lomefloxacin, grepafloxacin and Bay Y 3118 were identified to cause micronuclei and toxicity upon photochemical activation. Among the phenothiazines tested, chlorpromazine and 2-chlorophenothiazine, were positive for both endpoints, whereas triflupromazine was only slightly photoclastogenic in the presence of strong phototoxicity. Among the other potential human photosensitizers tested (oxytetracycline, doxycycline, metronidazole, emodin, hypericin, griseofulvin), only hypericin was slightly photogenotoxic. Photochemical toxicity in the absence of photochemical genotoxicity was noted for doxycycline and emodin. With the assay system described, it is possible to determine photochemical toxicity and photochemical genotoxicity concomitantly with sufficient reliability.
Mutation Research Letters | 1994
Lutz Müller; Peter Kasper; Kerstin Müller-Tegethoff; T. Petr
Estragole, trans-anethole and basil oil were tested for their ability to induce DNA repair in rat hepatocytes in vitro and in rat liver in an ex vivo test. There was a marked induction of UDS by estragole and basil oil in vitro (LOEC about 10(-5) mol/l). The basil oil we used contained about 88.2% estragole. It is evident from our results that the induction of UDS with basil oil could be directly related to its main constituent estragole. trans-Anethole was only slightly effective in the in vitro UDS test. The ex vivo UDS test led to clearly elevated DNA repair for estragole and basil oil in rats treated orally with doses up to 2 g/kg body weight. Estragole was not positive in a chromosomal aberration test with V79 cells either via direct treatment, with rat liver S9 mix or with rat hepatocytes as source of metabolism.
Mutation Research\/environmental Mutagenesis and Related Subjects | 1995
Kerstin Müller-Tegethoff; Peter Kasper; Lutz Müller
Based on a previous study with 8 chemicals (Müller et al., 1993) the applicability of the in vitro rat hepatocyte micronucleus assay was evaluated by testing a further 21 compounds of different chemical classes. The obtained results are in good agreement with the known genotoxic profiles of about 90% of the in total tested compounds. Several known mutagens and carcinogens, i.e., alkylating agents, aromatic amines, nitrosamines, nitro compounds, cross-linking agents, and pyrrolizidine alkaloids gave clear positive results in this assay, whereas all of the tested non-carcinogens were negative. The hepatocyte micronucleus assay was shown to distinguish between carcinogenic/non-carcinogenic isomers, such as 2- and 4-acetylaminofluorene (AAF) and 2- and 1-nitropropane (NP). Furthermore, the non-genotoxic nature of several hepatocarcinogens, i.e., the peroxisome proliferating agents fenofibrate, nafenopin, Wy-14,643, diethyl(hexyl)phthalate (DEHP), and the sedative phenobarbital, could be confirmed in this assay. The hepatocarcinogen coumarin exerted mitogenic but no mutagenic properties in the rat hepatocyte micronucleus assay. This compound may act as a liver tumor promoter. Benzo[a]pyrene (B[a]P) and 7,12-dimethylbenzanthacene (DMBA), both belonging to the group of known carcinogenic and mutagenic polycyclic aromatic hydrocarbons, failed to induce micronucleus formation in rat hepatocytes. The high susceptibility of in vitro proliferating hepatocytes to mitotic inhibition, exerted by the strong cytotoxic actions of these compounds, seems to be responsible for these negative results. A strongly reduced mitotic activity can prevent the formation of micronuclei, even when clastogenic effects may have occurred. In the present stage, the in vitro rat hepatocyte micronucleus assay cannot be recommended for screening genotoxicity testing. It should rather be used for special purposes, e.g., when liver-specific mutagenic effects are expected.