Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Kazanzides is active.

Publication


Featured researches published by Peter Kazanzides.


international conference on robotics and automation | 1994

An image-directed robotic system for precise orthopaedic surgery

Russell H. Taylor; Brent D. Mittelstadt; Howard A. Paul; William A. Hanson; Peter Kazanzides; Joel Zuhars; Bill Williamson; Bela Musits; Edward Glassman; William L. Bargar

The authors have developed an image-directed robotic system to augment the performance of human surgeons in precise bone machining procedures in orthopaedic surgery, initially targeted at cementless total hip replacement surgery. The total system consists of an interactive CT-based presurgical planning component and a surgical system consisting of a robot, redundant motion monitoring, and man-machine interface components. In vitro experiments conducted with this system have demonstrated an order-of-magnitude improvement in implant fit and placement accuracy, compared to standard manual preparation techniques. The first generation system described in this paper was used in a successful veterinary clinical trial on 26 dogs needing hip replacement surgery. It was the basis for subsequent development of a second-generation system that is now in human clinical trials. >


Clinical Orthopaedics and Related Research | 1992

Development of a surgical robot for cementless total hip arthroplasty.

Howard A. Paul; William L. Bargar; Brent Mittlestadt; Bela Musits; Russell H. Taylor; Peter Kazanzides; Joel Zuhars; Bill Williamson; William A. Hanson

The long-term success of cementless total hip arthroplasty (THA) may depend on bone ingrowth into the porous-fixation surfaces of the implant. The ingrowth process is facilitated when the surgeon achieves a satisfactory fit for the prosthesis. Clinically or roentgenographically visible failure and persistent thigh pain after cementless THA remain significant problems, both of which may be alleviated by more precise preparation of the femoral canal and selection of an appropriately sized prosthesis. The objective of this study was to obtain an exact fit for the prosthesis through the use of an image-directed surgical robot for femoral canal preparation.


International Journal of Radiation Oncology Biology Physics | 2008

High-Resolution, Small Animal Radiation Research Platform With X-Ray Tomographic Guidance Capabilities

John Wong; Elwood Armour; Peter Kazanzides; Iulian Iordachita; Erik Tryggestad; Hua Deng; Mohammad Matinfar; Christopher W. Kennedy; Zejian Liu; Timothy A. Chan; Owen Gray; Frank Verhaegen; T.R. McNutt; Eric Ford; Theodore L. DeWeese

PURPOSE To demonstrate the computed tomography, conformal irradiation, and treatment planning capabilities of a small animal radiation research platform (SARRP). METHODS AND MATERIALS The SARRP uses a dual-focal spot, constant voltage X-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120 degrees from vertical. X-rays of 80-100 kVp from the smaller 0.4-mm focal spot are used for imaging. Both 0.4-mm and 3.0-mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam computed tomography is achieved by rotating the horizontal animal between the stationary X-ray source and a flat-panel detector. The radiation beams range from 0.5 mm in diameter to 60 x 60 mm(2). Dosimetry is measured with radiochromic films. Monte Carlo dose calculations are used for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. RESULTS The SARRP spans 3 ft x 4 ft x 6 ft (width x length x height). Depending on the filtration, the isocenter dose outputs at a 1-cm depth in water were 22-375 cGy/min from the smallest to the largest radiation fields. The 20-80% dose falloff spanned 0.16 mm. Cone-beam computed tomography with 0.6 x 0.6 x 0.6 mm(3) voxel resolution was acquired with a dose of <1 cGy. Treatment planning was performed at submillimeter resolution. CONCLUSION The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation.


The International Journal of Robotics Research | 2009

Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat

Nabil Simaan; Kai Xu; Wei Wei; Ankur Kapoor; Peter Kazanzides; Russell H. Taylor; Paul W. Flint

In this paper we present the clinical motivation, design specifications, kinematics, statics, and actuation compensation for a newly constructed telerobotic system for Minimally Invasive Surgery (MIS) of the throat. A hybrid dual-arm telesurgical slave, with 20 joint-space Degrees-of-Freedom (DoFs), is used in this telerobotic system to provide the necessary dexterity in deep surgical fields such as the throat. The telerobotic slave uses novel continuum robots that use multiple super-elastic backbones for actuation and structural integrity. We present the kinematics of the telesurgical slave and methods for actuation compensation to cancel the effects of backlash, friction, and flexibility of the actuation lines. A method for actuation compensation is presented in order to overcome uncertainties of modeling, friction, and backlash. This method uses a tiered hierarchy of two novel approaches of actuation compensation for remotely actuated snake-like robots. The tiered approach for actuation compensation uses compensation in both joint space and configuration space of the continuum robots. These hybrid actuation compensation schemes use intrinsic model information and external data through a recursive linear estimation algorithm and involve compensation using configuration space and joint space variables. Experimental results validate the ability of our integrated telemanipulation system through experiments of suturing and knot tying in confined spaces.


Medical Image Analysis | 1999

Computer-integrated revision total hip replacement surgery: concept and preliminary results

Russell H. Taylor; Leo Joskowicz; Bill Williamson; André Guéziec; Alan D. Kalvin; Peter Kazanzides; Robert Van Vorhis; Jianhua Yao; Rajesh Kumar; Andrew Bzostek; Alind Sahay; Martin Börner; Armin Lahmer

This paper describes an ongoing project to develop a computer-integrated system to assist surgeons in revision total hip replacement (RTHR) surgery. In RTHR surgery, a failing orthopedic hip implant, typically cemented, is replaced with a new one by removing the old implant, removing the cement and fitting a new implant into an enlarged canal broached in the femur. RTHR surgery is a difficult procedure fraught with technical challenges and a high incidence of complications. The goals of the computer-based system are the significant reduction of cement removal labor and time, the elimination of cortical wall penetration and femur fracture, the improved positioning and fit of the new implant resulting from precise, high-quality canal milling and the reduction of bone sacrificed to fit the new implant. Our starting points are the ROBODOC system for primary hip replacement surgery and the manual RTHR surgical protocol. We first discuss the main difficulties of computer-integrated RTHR surgery and identify key issues and possible solutions. We then describe possible system architectures and protocols for preoperative planning and intraoperative execution. We present a summary of methods and preliminary results in CT image metal artifact removal, interactive cement cut-volume definition and cement machining, anatomy-based registration using fluoroscopic X-ray images and clinical trials using an extended RTHR version of ROBODOC. We conclude with a summary of lessons learned and a discussion of current and future work.


international conference on robotics and automation | 1992

Force sensing and control for a surgical robot

Peter Kazanzides; Joel Zuhars; Brent D. Mittelstadt; Russell H. Taylor

The authors describe the use of force feedback in a surgical robot system (ROBODOC). The application initially being addressed is total hip replacement (THR) surgery, where the robot must prepare a cavity in the femur for an artificial implant. In this system, force feedback is used to provide safety, tactile search capabilities, and an improved man-machine interface. Output of the force sensor is monitored by a safety processor, which initiates corrective action if any of several application-defined thresholds are exceeded. The robot is able to locate objects using guarded moves and force control (ball-in-cone strategy). In addition, the force control algorithm provides an intuitive man-machine interface which allows the surgeon to guide the robot by leading its tool to the desired location. An application of force control currently under development is described, where the force feedback is used to modify the cutter feed rate (force controlled velocity).<<ETX>>


Medical Image Analysis | 2008

Robotic assistance for ultrasound-guided prostate brachytherapy

Gabor Fichtinger; Jonathan Fiene; Christopher W. Kennedy; Gernot Kronreif; Iulian Iordachita; Danny Y. Song; Everette Clif Burdette; Peter Kazanzides

We present a robotically assisted prostate brachytherapy system and test results in training phantoms and Phase-I clinical trials. The system consists of a transrectal ultrasound (TRUS) and a spatially co-registered robot, fully integrated with an FDA-approved commercial treatment planning system. The salient feature of the system is a small parallel robot affixed to the mounting posts of the template. The robot replaces the template interchangeably, using the same coordinate system. Established clinical hardware, workflow and calibration remain intact. In all phantom experiments, we recorded the first insertion attempt without adjustment. All clinically relevant locations in the prostate were reached. Non-parallel needle trajectories were achieved. The pre-insertion transverse and rotational errors (measured with a Polaris optical tracker relative to the templates coordinate frame) were 0.25 mm (STD=0.17 mm) and 0.75 degrees (STD=0.37 degrees). In phantoms, needle tip placement errors measured in TRUS were 1.04 mm (STD=0.50mm). A Phase-I clinical feasibility and safety trial has been successfully completed with the system. We encountered needle tip positioning errors of a magnitude greater than 4mm in only 2 of 179 robotically guided needles, in contrast to manual template guidance where errors of this magnitude are much more common. Further clinical trials are necessary to determine whether the apparent benefits of the robotic assistant will lead to improvements in clinical efficacy and outcomes.


international conference on robotics and automation | 2007

Development and Application of a New Steady-Hand Manipulator for Retinal Surgery

Ben Mitchell; John Koo; M. Iordachita; Peter Kazanzides; Ankur Kapoor; James T. Handa; Gregory D. Hager; Russell H. Taylor

This paper describes the development and initial testing of a new and optimized version of a steady-hand manipulator for retinal microsurgery. In the steady-hand paradigm, the surgeon and the robot share control of a tool attached to the robot through a force sensor. The robot controller senses forces exerted by the operator on the tool and uses this information in various control modes to provide smooth, tremor-free, precise positional control and force scaling. The steady-hand manipulator reported here has been specifically designed with the unique constraints of retinal microsurgery in mind. In particular, the system makes use of a compact wrist design that places the bulk of the robot away from the operating field. The resulting system has high efficacy, flexibility and ergonomics while meeting the accuracy and safety requirements of microsurgery. We have now tested this robot on a biological model system and we report a protocol for reliably cannulating ~80 mum OD veins (the size of veins in the human retina) using the system


International Journal of Medical Robotics and Computer Assisted Surgery | 2008

An integrated system for planning, navigation and robotic assistance for skull base surgery

Tian Xia; Clint Baird; George I. Jallo; Kathryn Hayes; Nobuyuki Nakajima; Nobuhiko Hata; Peter Kazanzides

We developed an image‐guided robot system to provide mechanical assistance for skull base drilling, which is performed to gain access for some neurosurgical interventions, such as tumour resection. The motivation for introducing this robot was to improve safety by preventing the surgeon from accidentally damaging critical neurovascular structures during the drilling procedure.


international conference on robotics and automation | 1992

A surgical robot for total hip replacement surgery

Howard A. Paul; Brent Mittlestadt; William L. Bargar; Bela Musits; Russell H. Taylor; Peter Kazanzides; Joel Zuhars; Bill Williamson; William A. Hanson

The authors describe a robotic surgical system that has been designed to create femoral cavities that are precisely shaped and positioned for implantation of uncemented prostheses. This robotics system creates cavities with a dimensional accuracy more than 50 times greater than broached cavities, exceeds the tolerances to which implants are manufactured, and does not produce gaps that prevent bone ingrowth. A canine study was undertaken to evaluate the prosthesis fit and placement achieved by employing a surgical robot to prepare the femur. This study compared the results achieved on 15 dogs undergoing total hip replacement with manual broaching techniques and 25 dogs undergoing robotically assisted surgery. Among the 25 dogs, which ranged in age from 2/sup 1///sub 2/ to 11 years, there were no deaths, no infections, and no intraoperative complications. Human applications of this technique are also considered.<<ETX>>

Collaboration


Dive into the Peter Kazanzides's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Deguet

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

John Wong

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge