Peter Kjær Willendrup
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Kjær Willendrup.
Journal of Applied Crystallography | 2013
Erik Knudsen; Andrea Prodi; Jana Baltser; Maria Thomsen; Peter Kjær Willendrup; Manuel Sanchez del Rio; Claudio Ferrero; Emmanuel Farhi; Kristoffer Haldrup; Anette Vickery; Robert Feidenhans'l; Kell Mortensen; Martin Meedom Nielsen; Henning Friis Poulsen; Søren Schmidt; K. Lefmann
This article presents the Monte Carlo simulation package McXtrace, intended for optimizing X-ray beam instrumentation and performing virtual X-ray experiments for data analysis. The system shares a structure and code base with the popular neutron simulation code McStas and is a good complement to the standard X-ray simulation software SHADOW. McXtrace is open source, licensed under the General Public License, and does not require the user to have access to any proprietary software for its operation. The structure of the software is described in detail, and various examples are given to showcase the versatility of the McXtrace procedure and outline a possible route to using Monte Carlo simulations in data analysis to gain new scientific insights. The studies performed span a range of X-ray experimental techniques: absorption tomography, powder diffraction, single-crystal diffraction and pump-and-probe experiments. Simulation studies are compared with experimental data and theoretical calculations. Furthermore, the simulation capabilities for computing coherent X-ray beam properties and a comparison with basic diffraction theory are presented.
Journal of Neutron Research | 2008
K. Lefmann; Peter Kjær Willendrup; Linda Udby; Bente Lebech; Kell Mortensen; Jonas Okkels Birk; Kaspar Hewitt Klenø; Erik Knudsen; P. Christiansen; Jan Šaroun; J. Kulda; Uwe Filges; M. Konnecke; Philip L. W. Tregenna-Piggott; Judith Peters; K. Lieutenant; G. Zsigmond; Phillip M. Bentley; Emmanuel Farhi
We define a virtual neutron experiment as a complete simulation of an experiment, from source over sample to detector. The virtual experiment (VE) will ideally interface with the instrument control software for the input and with standard data analysis packages for the virtual data output. Virtual experiments are beginning to make their way into neutron scattering science with applications as diverse as instrument design/upgrade, experiment planning, data analysis, test of analysis software, teaching, and outreach. In this paper, we summarize the recent developments in this field and make suggestions for future developments and use of VEs.
Journal of Neutron Research | 2014
Peter Kjær Willendrup; Emmanuel Farhi; Erik Knudsen; Uwe Filges; Kim Lefmann
The McStas neutron ray-tracing simulation package is a collaboration between Riso DTU, ILL, University of Copenhagen and the PSI. During its lifetime, McStas has evolved to become the world leading software in the area of neutron scattering simulations for instrument design, optimisation, virtual experiments and science. McStas is being actively used for the design-update of the European Spallation Source (ESS) in Lund. This paper includes an introduction to the McStas package, recent and ongoing simulation projects. Further, new features in releases McStas 1.12c and 2.0 are discussed.
Journal of Neutron Research | 2014
Emmanuel Farhi; Y. Debab; Peter Kjær Willendrup
We present a new tool, iFit, which uses a single object class to hold any data set, and provides an extensive list of methods to import and export data, view, manipulate, apply mathematical operators, optimize problems and fit models to the data sets. Currently implemented using Matlab®, the toolbox is lightweight and comes with an extensive documentation based on tutorials with ready-to-run examples for each operator. Provided with the package is a set of optimization algorithms, which we have benchmarked in order to recommend the ones that provide the best success rate for both continuous and noisy problems. These optimizers can then be used to fit models onto data objects, and optimize McStas instrument simulations. As an application, we propose a methodology to analyse neutron scattering measurements in a pure Monte Carlo optimization procedure using McStas and iFit. As opposed to the conventional data reduction and analysis procedures, this new methodology is able to intrinsically account for most of the experimental effects, and results in the sample only model, de-convolved from the instrument.
Scientific Reports | 2017
Alberto Cereser; Markus Strobl; Stephen Hall; Axel Steuwer; Ryoji Kiyanagi; Anton S. Tremsin; Erik Knudsen; Takenao Shinohara; Peter Kjær Willendrup; Alice Bastos da Silva Fanta; Srinivasan Iyengar; Peter Mahler Larsen; Takayasu Hanashima; Taketo Moyoshi; Peter M. Kadletz; P. Krooß; T. Niendorf; Morten Sales; Wolfgang W. Schmahl; Søren Schmidt
The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD).
Proceedings of SPIE | 2011
Erik Knudsen; Andrea Prodi; Peter Kjær Willendrup; Kim Lefmann; Jana Baltser; Carsten Gundlach; Manuel Sanchez del Rio; Claudio Ferrero; Robert Feidenhans'l
we present the developments of the McXtrace project, a free, open source software package based on Monte Carlo ray tracing for simulations and optimisation of complete X-ray instruments. The methodology of building a simulation is presented through an example beamline, namely Beamline 811 at MAX-lab, Lund, Sweden - a beamline dedicated to materials science.
Review of Scientific Instruments | 2013
Kim Lefmann; Kaspar Hewitt Klenø; Jonas Okkels Birk; Britt Rosendahl Hansen; Sonja L. Holm; Erik Knudsen; K. Lieutenant; Lars von Moos; Morten Sales; Peter Kjær Willendrup; Ken H. Andersen
We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.
International Workshop on Neutron Optics and Detectors | 2014
Peter Kjær Willendrup; Erik Knudsen; Esben Bryndt Klinkby; T. Nielsen; Emmanuel Farhi; Uwe Filges; Kim Lefmann
The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.
International Workshop on Neutron Optics and Detectors | 2014
Esben Bryndt Klinkby; Erik Knudsen; Peter Kjær Willendrup; Bent Lauritzen; Erik Nonbøl; Phillip M. Bentley; Uwe Filges
Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides. The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates in the vicinity of the guide. In addition the logging mechanism is employed to record the scatterings along the guides which is exploited to simulate the supermirror quality requirements (i.e. m-values) needed at different positions along the beam guide to transport neutrons in the same guide/source setup.
Proceedings of SPIE | 2011
A. Prodi; Erik Knudsen; Peter Kjær Willendrup; S. Schmitt; C. Ferrero; Robert Feidenhans'l; Kim Lefmann
Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual coherence function (MCF) are propagated to the exit plane. Here we present an approach based on Monte Carlo sampling of the Green function. A Gauss-Shell Stochastic Source with arbitrary spatial coherence is synthesized by means of the Gaussian copula statistical tool. The Green function is obtained by sampling Huygens-Fresnel waves with Monte Carlo methods and is used to propagate each source realization to the detector plane. The sampling is implemented with a modified Monte Carlo ray tracing scheme where the optical path of each generated ray is stored. Such information is then used in the summation of the generated rays at the observation plane to account for coherence properties. This approach is used to simulate simple models of propagation in free space and with reflective and refractive optics.